HUGO Language Manual and Report

This manual describes HUGO, a programming language
developed at the Text Editing and Photocomposition
Branch of the Canadian Government Printing Office.
This language has been designed to aid in the full auto-
mation of text composition and typesetting. Unlike pre-
vious programming languages, its intended users are
people whose primary expertise and experience is in the
area of copy styling and printing, and who are only
secondarily computer programmers. With its help it is
hoped that both the ability of printers to use the new
computer-related technology and the ability of comput-
ers to serve printers will be improved.

"~ As HUGO is newly developed, there is still a lot of room
for improvement in its design. Any helpful comments on

the language or its implementation will be welcomed by
HUGO’s implementers.

HUGO Implementation Team:
G. Latona

S. Lucas

S. Wilmott

Text Editing and Photocomposition Branch
Canadian Government Printing Office
Room 3100

45 Blvd. Sacré Couer

Hull, P.Q., K1A 0S7

August 20, 1980

i

Table of Contents

Giintroduction’ "W RS S R S
0.1 Summary of the Language
0.2 Background and Development
0.3 Intended Use of the Language
0.4 Qutline of the Language Description
0’5 Notation =GRS TN N T

1§BasiciConcepts in s T EE IS
1 DS 1S S S I E

1.1.1 Value Contexts and Precision
142 Constants RS TREIE UL ISR S

de20Namesy SN I o i

123 SynonymsiEf Ul =l e
13 Programiiayout’ T D SR
2 Expressionsi SRENE S S D e
2.1 Computational Expressions
2.1.1 Order of Execution in Expressions . . :
2.1.2 Elements of Computational Expressions .
2.1.3 Computational Operations
2.2 Boolean Expressions
2.2.1 Boolean Operations
2.2.2 Lexical Comparison Operators
2.2.3 Numeric Comparison Operators
2.3 Built-in Fupetions.
2.3.1 Computational Built-in Functions
2.3.2 Boolean Built-in Functions
2.3.3 Named String Constants
3 Statementsit I ST
3.1 Assignment and Add Statements
3.2 Conditional Statements
3.3 Repetitive Statements
2.4 Simple Input and Output
S A e e e
342 G)n tr IR e N S
343 he Ger Ennctionh W iE SIS s
34.4ThePutStatement
3.5:Fhen'Statements! - S

4Declarations 11
4.1 Variable Declarations 11
4 EGlobals s Tl s SIS N e 12
40 2 lbacalst I n e R . 12
413 Eistsh - L e 12
414 ListEnguires0 L 13
42 Ennctions IR DRI e 14
4.3 User-Defined Statements 14
44 Type Declarations 14
4.4.1 Type Attributes in Variable Declarations 14
4.4.2 Type Built-in Functions 14
SEProgsramsi eI R S 15
SHifhelProgram vt L RS VRIS B s 16
S2Set-upiSections: oo 16
5.2.1 Program Initialization and Termination . 16
5.2.2 Special Program Control 16
5.3 Segmentst T 16
5.4 The Stop Statement 17
6 @haracters D N A A S 17
6.1 Setting Characters 17
6.1.1 Types of Characters 157,
6.1.2 The Set Statement 18
6.1230ser-codes N D B RS R 18
5i1i4iCase Shifting L LS B S T e 18
6.2 Character Attributes 18
6.2.1 Fontand Typesize 18
6.2.2 Boldface and Italic Type 20
6.2.3 Slanting and Repositioning Type 20
6.2.4SmallCapitals 20
63 Cnads BT BT et R e 20
6.4 Character Enquiries 20
6.4.1 Sizing Operators 21
6.4.2 Character Functions 21
Foliines PR L P - Pt R 21
7.1 Basic Line Makeup 2
72 Emedustification = S0 1 e Dl 23
7.3 Variable Spacein Lines 23
7 SHESpaceiBands IR G VST OIS 25
7.3.2 Space-Filling and Leadering 23
7.4 Explicit Line Breaking Control 24
7> Hyphenation el s anE S IS 24
746 Tdentation SAEESIEEEEEDENE R e 24

a7 ine EnqRinicsERaie i S B 23

" Table of Contents

8 Paragraphs.

8.1 Character, Line and Paragraph Makeup

Attributes

8.1.2 Saving and Restoring
8.2 Paragraph Organization
8.2.1 Sub-Paragraphs . .
8.2.2 Paragraph Breaking
8.2.3 Interiine Spacing .
8.2.4 Paragraph Enquiries
8.3 Types of Paragraphs . .
8.3.1 Text Paragraphs . .
8.3.2 Carried Heads . . .
8.3.3 Reference Heads .
SiA¥Eables UM EIET S
8.4.1 Table Definition . .
8.4.2 Tabular Text

Attributes

8.4.3 Tabular Entry Alignment

8.4.4 Tabular Enquiries .
35 Footnotes
8.5.1 Defining Footnotes

8.5.2 Positioning Footnotes
8.6 Sidenotes
8.7 Explanatory Notes . . .
8.8 Division Lists

2.1 Page Layouts
9.1.1 The Page Dimensions

9.1.2 Positioning Textina Page

9.1.3 Sequence of Pages .
9.2 The Page Body

9.2.1 Entering and Leaving the Page Body

9.2.2 Column Justification

9.2.3Spaceinthe Page Body
9.2.4 Galley-Form Page Bodies
9.2.5 Explanatory Note Bodies

9.3 Page Makeup

9.3.1 Single Stream Makeup
9.3.2 Mutltiple Stream Makeup
9.3.3 Page Column Positioning

9.4 Page Indexing
9.5 Page Makeup Enquiries

9.5.1 Enquiries About the Page

952 Areas 0

iii
10 Ruling and Underlining 37
10.1' Underlining © @ - . .00 37
10.1.1 Basic Underlining 37
105182ISide-lintno SR I 38
102 Rule-Eillingle T8 8 = 08 S 38
1083 Eipure Rules i S P e - 39
10.4 Ruling in the Page Layout 39
10.5 Rulinginthe PageBody 39
10:6FRulctEnguiries S 39
I Tiext$in pu L e o O 41
11.1 Automatic Text Editing 41
112 Fhe Startiofithe Text 42
T3t ThelEnd ofithe Fextt o L0 s i A 42
11247Patterns BRI I A 42
11.4.1 Pattern Expressions 42
11.4.2 Group Patteras 43
11.4.3 Position Patterns 43
11.4.4 Scanning Patterns 43
11.4.5 Examining the Next Line 44
Hz4'6 PistiPatieras™ SR R LS 51
11.4.7 Pattern Parameters 52
11.5 TheRescan Statement 53
12iGencral Enquiriest M SURE TS RSl s o 54
121 Statisties’ e U S L 54
1226kimeiand Datedios i S s S5
Appendix A - Implementation Dependent Features 56
A.l Special Conversion Functions 56
A.2 Device-Dependent Character Setting 57
A3 Becuments - .. . 0000 57
A.4 Job Identification and Accounting 58
ASCpusdame - ST T e 59
A6 Error Handhings 0 - 0 D Rl G 62
A.7Source LineNumbers 62
Appendix B - Language Summary 62
B Syntax S e 62
B.2 List of Synonyms o S0 F o el 63
B.3 Operator Priorities 63
B.4 Default Attributes 64
Appendix C - Using the TEPB Impiementation of
GO B B e s e e S 64
C.1 Invoking the HUGO System 64
C.2 Compiler Directives 64
C3iRpn-time Pirectaves 1 64
C.4 Submitiing Jobs Through ATS 64
C.5 Stand-Alone Bilingual Merge Program . . . 64
C6 XPORT EormatFies 0. 64
C 7 @thepfiitihities) L0 L0 R 64

Table of Contents

C.8 Updating the Source Library 58
Appendix D - Font and Character Access 59
BHE Eonts S S S D R P 59
D.2 Input Character Sequences 62
D.2.1 Standard Input Sequences 62
D.2.2 “Pi® input Seguences: oL 62
B2.3 Greek @haracters IS N 62
D.2.4 Bedford Characters 63
D.2.5 Accessing Other Characters 63

D.3 Internal Character Codes 64

D.3.1 Perma Utility (font0) 64

iv

D.3.2 Standard Fonts (fonts 1 to 19 and 26 to
PL I o Rl A SRR S S S e 64
DISI3EP; fort2 O N o 64
PI3A Picfont 2N Bl il o e 64
DI3iSPitfont 22 T 64
s ot RN S 64
D.3.7GreekPi(font24) 64
D.3.8 Bedford Monowidth (font 25) 64
Appendix E - Sample Program 65
Indexe i D s 70

0 Introduction

This report defines the HUGO programming language.
All other descriptions and ail implementations of the
language should attempt te conform to this definition.
Any deviation from this.report should be considered an
error. On the other hand, any ambiguity or incomplete-
ness in this report can itself be considered an error.

HUGO is a name and not an acronym. It should be
applied' only to the language and the software which
implements it. It should not be applied to any applica-
tion of the language or to any input coding system used
with the language.

It is intended that this report be supplemented by a
User’s Manual, (which this is not,) which will be better
suited to those just learning the language or the casual
user. And for convenience, there is a Quick Reference
booklet which summarizes all the features of the ian-
guage and the fonts and characters available.

This report corresponds to version 1.9 of the language.

0.1 Summary of the Language

A HUGO program describes to the HUGO system how
a job is to be phototypeset.

A HUGO program is fed to a system program called the
compiler. The output of the compiler is a machine read-
able description of the task to be performed. This
description, together with the input text for the job is
then fed to a program called the interpreter. The inter-
preter produces a magnetic tape which in turn will cause
a phototypesetting machine to produce camera ready
copy.

A HUGO prograxh itself contains descriptions of input
formats, of page layouts, of tadle layouts, of type char-
acteristics and of special processing for a job.

0.2 Background and Development

The Text Editing and Processing Branch of the
Canadian Government Printing Office has been develop-
ing and supporting text processing software since the
late 1960's. Since Hansard, the verbatum transcript of
the proceedings of the House of Commons, was first
processed in 1971, the composition of most parliamen-
tary papers has been computerized. Continual software
develcpment has been necessary to cope with the ever
growing needs of the legislature and of other branches
within the government. HUGO is the latest product of
this development.

The software package currently used by the Printing
Office, a text composition system called TPS, originally
consisted of a mixture of general purpose utilities, such
as the hyphenation and justification program, and of
special purpose utilities, such as the various page format-
ting programs. Later, with the aid of progressively more
powerful parameterization mechanisms, software was
developed that would process a large variety of input and
page formats. However, with greater power came
greater compiexity, for the software’s users as well as for
its maintainers. The user who needed the full power of
the system was forced to develop skills much like those

of a computer programmer in order to be able to create
the sequences of commands required by the programs.

HUGO is a new programming language, containing pro-
cedural and non-procedural elements. It is derived from
existing programming languages and existing typesetting
systems, and it is adapted to the text composition
application. It has been designed to allow application-
knowledgable and oriented personnel to develop compo-
sition programs appropriate to their individual work. To
this end, the language has been simplified so that no pro-
gramming skills are needed beyond those required to
parameterize the currently used “generalized” software.
The language design emphasises:
(a) a non-mathematical notation,
(b) absence of storage allocation and data represen-
tation declarations,
(c) a uniform, “structured” set of control facilities,
and
(d) a powerful method of describing input formats.

Design and development of HUGO commenced in Feb-
ruary 1978 and by October 1978 a version of the system
was working and in limited use. Since then use of the
language has steadily increased, and the language has
been enhanced to the state described in this manual. Itis
not expected that any further major enhancements will
be needed, although there is room for many minor
improvements. The number of fonts and characters
available can be increased. And the predefined
sequences used to input characters can be replaced by a
system better suited to video-screen input devices.

The current implementation of HUGO runs on an
IBM370/148 computer running under OS/VS! and
producing output for an APS-4 phototypesetter. The
HUGO compiler and interpreter are written in the PL/I
programming language. HUGO can be made to run on
other computers and phototypesetters either by modify-
ing the current implementation or by re-implementing it
on another computer system. At the moment, however,
there are no plans to distribute the current implementa-
tion of HUGO beyond the instaliation at which it has
been developed or to transfer it to any other configura-
tion of computers or phototypesetiers.

0.3 Intended Use of the Language

HUGO makes no assumptions about the format of its
input data. The input can consist of text files, with or
without embedded commands, or fixed-field data, as is
usually produced by programs written in more tradi-
tional languages such as COBOL or FORTRAN. The
power of HUGO’s text editing facilities and the great
flexibility of its composition facilties allow HUGO pro-
grams to be written t0 process data intended for a wide
variety of other systems.

This is not, however, the only or even the best use that
can be made of HUGO’s power. With the advent of the
concept of generic text coding and textual data bases, it
has been recognized that designing textual input conven-
tions is an important and non-trivial task. HUGO’s
power is intended primarily to give the greatest freedom

0 Introduction

in designing these new conventions and to make them
casy to implement.

Because HUGO can be used to implement input conven-
tions that are, in effect, text formatting “languages”,

ch HUGO program should be able to process a num-
ber of different jobs. This is 2 more than adequate com-
pensation for the fact that although HUGO programs
are generally easier to read than those in most other text
formatting languages, more effort is generally required
to set up 2 HUGO program.

There is one area in which HUGO is very limited when
compared to other text formatting systems. HUGO pro-
grams are intended to be run in a so-called “batch” envi-
ronment: once 8 HUGO program and its data have been
submitted to the computer, no further human interven-
tion is allowed. This mode of working is the only one
available in the environment in which HUGO was devel-
oped. And it is the most desirable way for many jobs
which, zlthough possibly quite complex, may be run over
and over again without change tc anything but the input
data. HUGO programs can be written which allow for
all but the most unexpected situations that can appear,
and treat them correctly. However, there are many jobs,
especiaily those which are quite complex yet short, for
which a more interactive system may be of greater use.

HUGQO is different from many other “batch” text com-
position systems in that it processes the text in one pass,
and not in two or more “phases” each of which reprocess
the text from the start. This means that even the most
catastrophic error (by the user or computer) part way
through a job will ieave the text set before the error was
encountered in a form that can be run on the phototype-
setter.

0.4 Outline of the Language Description

A HUGO program is primarily a means of describing a
complex format for a phototypesetting job. However, by
emphasising that HUGO is really a computer program-
ming language, this report attempts to provide a precise
definition of what HUGO looks like and of what it does.

The report consists of short chapters, each of which
describes some major feature of the language. The first
five chapters describe those parts of the language which
make it a computer programming language. The chap-
ters from number six on describe the photocomposition
aspects of the language. A number of appendices sum-
marize various aspects of the language.

0.3 Notation

The HUGO language is described by a combination of
English narrative and modified Backus-Naur form

(BNF). BNF describes syntax by the use of production
rules each of which gives the expansion of a syntactic
construction whose name is enclosed in angle brackets
{ < and >). For exampie:

<sentence> — <noun> are <adjective>

means that a sentence is a noun followed by the symbol
are, followed by an adjective. If this example were com-
plete, production rules would also exist for noun and
adjective.

Symbols in the HUGO language are represented in a
distinct typeface from that of the text to distinguish
them from both the narrative and the names of syntactic
constructs.

BNF includes a notation for allowing a syntactic con-
struct to produce alternate consequences:

<noun> —» elephants | mice

1t also allows a part of a production to be repeated an
arbitrary number of times, including zero times:

<adjective> — { very } big

means that an adjective can be big, very big, very very
big among others.

Finally BNF allows an optional construct:
<noun> — [pink] elephants

means that a noun can be either elephants or pink ele-
phants.

The following rule illustrates a construct which is a
consequence of the above definitions but deserves special
mention. It is used in this report to describe expressions
and similar grammatical entities.

<noun phrase> —» <noun> |
<noun phrase> or <noun>

means, of course, that a noun phrase is a sequence of one
or more nouns separated by the symbol or. It is used
rather than the { } notation to indicate, firstly, that the
order of evaluation is from left to right, as all but the
last noun in a sequence have to be reduced to a noun
phrase before the last noun can be included in a noun
phrase. Secondly, it indicates that if there are other defi-
nitions of a noun phrase, then these other forms can be
combined with the one defined above. So noun phrases
could be made up of not only ors and nouns.

Every BNF grammar has a starting symbol, the thing
which the whole grammar describes. In the case of this
report’s grammar, the starting symbol is, of course,
<HUGO program>.

w

1 Basic Concepts

i.1 Strings

The basic unit manipulated by a HUGO program is a
string. A string is a sequence of graphic characters and
may serve to represent either itself or a numeric value. A
string may be used as a photoset title, as a page number,
as a point size to indicate to the HUGO system the size
of text required, or for a variety of other purposes. The
exact interpretation of a string is dependent on its con-
text.

Each string has a length, that is, the number of charac-
ters in the string. Within a string, any character can be
referred to by its character number, which is its position
in the string. For example the first character in any
string is character number 1.

1.1.1 Value Contexts and Precision

A numeric value, a string which represents a number,
will only be used with at most three decimal places of
accuracy, though the value itself may contain more. In
certain contexts, it may be used as a whole number. And
in contexts where a numeric value is being interpreted as
a measurement or point size, the value is assumed to
represent a number of points, and only as much precision
is used as is required by the typesetting hardware. When
fewer decimal places than exists in a value are required,
the extra places are just dropped.

HUGO does not treat strings and numbers as distinct
data types except where such an interpretation is
demanded by their context. In this report, wherever a
reference is made to a number, what is meant is a2 string
whose contents conform to the syntax of numeric con-
stants.

1.1.2 Constaats

Values in a HUGO program are provided by evaluating
expressions. The simplest form of expression is the con-
stant. The graphic values of strings used as numbers
must conform to the syntax of numeric constants.

<constant> —
<quoted constant> |
<numeric constant>

<quoted constant> —
* { <character> }° |
¢ { <character> |’ |
* { <character> } * }
« { <character> }»

<character> — any graphic character other than
that which terminates the enclosing quoted

constant
<numeric constant> —
[+ | —] «digit> { <digit> }
[.{<digit>}] |
[+] = 1. <digit> { <digit> }

<digit> >0} 1]2}3]|4]516]7]81}59

Note that the syntax of a character is given in a non-for-
mal manner, as it is entirely dependent on the device
used to input the HUGO program. Also note that a
numeric constant may or may not contain a sign, and

may or may not contain a decimal point, but must con-
tain at least one digit.

Examples of constants: =

'the COW jumped over the MOON.’

<en francais»

“0.5"

0.5

-123

.1234 / only .123 will be used
/ in calculations

«George’s string» / French quotes needed
/ zo enclose English

‘>’ / And vica-versa

Examples of unacceptable constants:

ABC / A non-numeric string must be
/ enclosed in gotation marks.
«<ABC’® / Quotes must be matched.
7.3.4 / Unquoted numbers must
/ be well formed.

1.2 Names

Identifiers are used to name user variables, layouts, car-
ried heads and other objects in a HUGO program.

Normalily the same name can be used for two things of
different types, such as a layout and a carried head,
without confusion. The situation is a bit more complex
for variables, which are discussed later. It is safest not to
give two things the same name.

<identifier> —
<letter> { <letter> | <digit> | -}

<letter> —
A|B{C|DJ|E]
Et3IR{LIM|N|
QIRISI|ITIUI
Y{z[{AlAJE]
it UlIulTg
Note that identifiers must contain at least one letter.
Both upper- and lower-case letters may be used, but the
compiler treats them both as the same letter. Also,
hyphens in identifiers are ignored by the compiler. So
page-number is treated the same as Pagenumber. This
equivalence applies only to identifiers and not to strings.

!

i
l

< Z vy

H

o
X
£

A HUGO program may use any equivalent representa-
tion of those names defined by the language as well as of
those names defined in the program. In the grammar of
this report a consistent representation is used for each
name to improve readability.

Examples of identifiers:

ABC

SUM

Pagel
ma-différence

Exampies of unacceptabie identifiers:

lpage / Identifier must start with a letter.
A,B / Identifiers must contain only

/ letters, digits or hyphens.
‘ABC’ / Identifiers are not strings.

1 Basic Concepts

1.2.1 Scope

Every name has scope. The scope of a name is the part
of the program in which that name can be used.

Different types of objects may have the same name with
no conflict. Different objects of the same type must have
unique names. The only exception to this rule occurs in
the case of local and global variables, as described in the
chapter on Declarations.

1.2.2 Variables

Variables are used to save values away for later use in
expressions. Their values may be changed during the
running of the HUGO program.

<variable> —
<function name> |
<global variable> |
<local variabie> |
<list variable>

<list name> — <identifier>
<function name> — <identifier>
<global variable> — <identifier>
<local variable> — <identifier>

The use, definition and scope of the different types of
variables are defined elsewhere in this report.

1.2.3 Synonyms

The keywords in the HUGO language can have system-
defined synonyms which may be freely used in their
place. For example, the semicolon character is synony-
mous with the symbol then.

Synonyms serve three purposes. They can be shorthand
notation for longer symbols as in the case of the semico-
lon above. They can be used to produce program state-
ments more nearly conforming to natural language
usage, as in the case of inch and inches. Or they can
represent the components of the language in a form

more familiar to the user. So the language is not limited
to the terms familiar to anglophone computer program-
mers.

The synonyms available in the language are listed in an
appendix to this report.

1.3 Program Layout

A HUGO program exists as computer-readable text
divided into a sequence of lines. The elements of the pro-
gram may be placed on these lines in any manner so long
as the order specified by the language’s syntax is pre-
served. A further restriction is that each element of the
language, that is each identifier or constant, must be
coded within the confines of a single line.

Non-executable comments may be included in the pro-
gram text by placing the slash character (*/°) on any text
line. The slash and anything following it on the line is
ignored by the HUGO system and is therefore strictly
commentary. Slash characters appearing in string con-
stants represent themselves and constitute the only
exception to the above rule.

To avoid ambiguity, space characters must be placed
between any successive pair of program elements that
have the syntax of identifiers. A numeric constant must
also be separated from a preceding identifier by one or
more spaces, but numeric constants need not be immedi-
ately followed by a space. Any number of spaces may be
placed between any two successive program elements.
Text lines need not contain any program element, they
may be entirely blank or contain only commentary.

Instructions to the HUGO compiler, such as whether or
not the compiler is to list its input, can be included in the
compiler input. This is done by placing the appropriate
directive to the compiler on a line by itself, preceded by
a hyphen. A list of the available compiler directives is, of
course, implementation dependent, and will be described
in the documentation of HUGO’s implementation.

2 Expressions

There are two types of expressions. Computational
expressions, usually referred to as just “expressions”,
produce string or numeric values. Boolean expressions
specify a condition to be tested and used as a control to
some conditional program iogic.

2.1 Computational Expressions

An expression is used to produce a value. It produces
this value in a number of ways:
(a) Fetching of constant or variable values,
(b) Calculation of values by the use of arithmetic or
other operations, and
(¢) Calculation of values by the invocation of user-
defined functions.

The grammar shows how these ways of producing 2
value can be combined.

<expression> — <subexpression> |
<expression> cat <subexpression>

<subexpression> — <term> |
<subexpression> of <term> |
<subexpression> start-at <term>

<term> — <subterm> |

<term> plus <subterm> |
<term> minus <subterm>

<subterm> —» <factor> |
<subterm> mul-by <factor> |
<subterm> div-by <factor> |
<subterm> modulo <factor>

<factor> — <subfactor> |
<factor> index <subfactor>

<subfactor> —
<variable> |
<constant> |
<function call> |
<built-in function call> |
<subscription> |
<factor> percent |
(<expression>)

<function call> —
<function name> |
<function name>
(<expression> { , <expression> })

<subscription> —
<subfactor>
(<expression> [, <expression>])

Further definitions of operators are provided elsewhere
in this report. For example, there are operators to con-
vert numbers from measurements in picas, inches and
centimetres to the unit of measurement required for the
parameterization of the phototypesetting process.

Examples of expressions:

/ Assume in the following that

/ A has a value of ‘ABC’

/ I has a value of 3

/ J has a value of 1.7

/ and F is a function defined by the user.
i sul-by 4 / result value is 12

(j plus 2) div-by i / result vailue is 1.233

2 cat lc(a) / result value is °‘ABCabc’
a(l,2) / result value is ‘AB’
A start-at 2 /result value is ‘BC’
a cat J / result value is ‘ABC1.7’ .
Time-of-day / result value changes with time
/ TIME-OF-DAY is 2 built-in function.
trim(«xy*z*®») / resuit value is ‘xy®z’
/ where ‘‘trim’’ is defined in section
4.2

2.1.1 Order of Execution in Expressions

The order of execution of operations is determined by
three factors:

(2) The priority of an operation is given by its place
in the syntax. Those appearing in subfactors are
evaluated first, then those in factors, those in sub-
terms, those in terms, those in subexpressions,
and finally those in expressions.

(b) Operaticns at the same priority level are eva-
luated left-to-right.

(c) Parentheses can be used to override the above
order of evaluation.

2.1.2 Eiements of Computational Expressions

The meanings of function calls and of built-in function
calls are defined elsewhere in this report.

A subscription produces a substring of the factor, start-
ing at the character number specified by the first expres-
sion, and of a length specified by the second expression.
If the second expression is omitted, a length of 1 is used.

A variable gives its current value as its result.

A constant has its own value.

2.1.3 Computational Operations

Cperations in expressions are evaluated as follows.

{(a) cat: concatenates the two strings on either side
together.

(b) of: produces a string which is the second argu-
ment repeated the number of times indicated by
the first argument.

(c) start-at: produces the substring of the first argu-
ment starting at the character position specified
in the second argument and ending at the end of
the first argument.

(d) pius: adds its two arguments together.

() minus: subtracts its second argument from its
first.

(f) mul-by: multiplies its two arguments together.

(g) div-by: divides its second argument into its first.

(h) moduio: produces the remainder after dividing
the second argument into the first a whole num-
ber of times.

(i) index: gives the character number of the first
location where the second argument is matched
within the first argument.

(3) percent: divides the argument by 100.

Those arguments of the above operators used to indicate
positions or repetition counts or are used in arithmetic
computations must, of course be numbers.

2 Expressions

2.2 Boolean Expressions

A Boolean expression is syntacticly much like a2 compu-
tational expression, but it operates by combining tests
rather than string or arithmetic values. The order of exe-
cution is determined as for computational expressions.

A Boolean expression either succeeds or fails.

<Boolean expression> — <Boolean term> |
<Boolean expression> or <Boolean term>

<Boolean term> — <Boolean factor> |
<Boolean term> and <Boolezn factor>

<Boolean factor> —
<Boolean built-in function call> |
{ <Boolean expression>)

Examples of Boolean expressions:

Assume the values for A, I and J
given in chapter 2Z.1.
is *ABC’ / succeeds
eq 03 / succeeds
is 3 / suceeds
is 03 / fails
/ because 3 is the same as. 03
/ when compared as numbers,
/ but not when compared as strings.
i verify digit-string / suceeds
j verify digit-string / fails
/ because J has & dot in it.
i odd and i gt 10 / fails
/ because although i is odd,
/ it isn’t greater than 10

e b e DA S

Examples of unacceptable Boolean expressions:

i gt 0 and 1t S
/ should be: i gt 0 and i1 1t 5
a odd / because A isn’t a number.

2.2.1 Boolean Operations

Boolean operations allow the resuits of multiple com-
parisons and tests to be combined, and are evaluated as
follows:
(2) or: succeeds if either of its arguments succeeds.
(b) and: succeeds only if both of its arguments suc-
ceed.

2.2.2 Lexical Comparison Operators

The lexical comparison operators impose an arbitrary
ordering on strings. This ordering can be used 10
uniquely determine for any pair of strings which is the
“lesser” and which is the “greater”. The ordering also
specifies that two strings are equal only if they are of the
same length and correspord on a character-by-character
basis.

The ordering used is dependant on the collating sequence
of the character set on the computer being used to run
HUGO programs. However, most such sequences sort
the digits in increasing numeric order, the upper-case
letters in increasing alphabetical order, and aiso sort the
jower-case letters in increasing alphabetical order.

<Bcolean factor> —»
<expression> lex-lt <expression> |
<expression> lex-le <expression> |
<expression> lex-gt <expression> |

<expression> lex-ge <expression> |
<expression> is <expression> |
<expression> isnt <expression> |
<expression> verify <expression>

These operators compare iheir two arguments and
return success or failure depending on their relative posi-
tion in the lexical ordering scheme:
(a) lex-it: returns success if the first string is “less
than” the second;
{(b) lex-le: returns success if the first string is “less
tnan” the second or if they are equal;
(c) lex-gt: returns success if the first string is
“greater than” the second;
(d) lex-ge: returns success if the first string is
“greater than” the second, or if they are equal;
(e) is: returns success if the two strings are exactly
equal; and
(f) isnt: returns success if the two strings are not
equal.
(g) verify: succeeds only if all the characters in the
first argument are contained in the second argu-
ment.

2.2.3 Numeric Comparison Operators

The numeric comparison operators treat their arguments
as numbers and allow the usual arithmetic tests to be
performed on them.

<Boolean factor> —

<expression> eq <expression> |
<expression> ne <expression> |
<expression> It <expression> |
<expression> le <expression> |
<expression> gt <expression> |
<expression> ge <expression> |
<expression> even |
<expression> odd

(a) eq: succeeds if the two arguments have the same
value.

{b) ne: succeeds if the two arguments have different
values.

(c) It: succeeds if the first argument is less than the
second argument.

(d) fe: succeeds if the first argument is either less
than or equal in value to the second.

(e) gt: succeeds if the first argument is greater than
the second.

(f) ge: succeeds if the first argument is either greater
than or equal to the secend.

(g) even: succeeds if the whole number part of the
argument is an even number.

(h) odd: succeeds if the whole number part of the
argument is an odd number.

2.3 Built-in Functions

HUGO provides a number of predefined functions which
may be used in a program. These functions may be used
so long as the user doesn’t define a global variable or
function name using the same identifier as the built-in
function name. Each built-in function available is
described in this report together with the feature of the
language to which the built-in function is related. A
built-in function may or may not have arguments.

2 Expressions

The scope of any built-in function used within a program
is the whole program.

2.3.1 Computational Built-in Functions

These built-in functions are associated primarily with
the control functions of the language.

<built-in function call> —
jength (<expression>) |
floor { <expression>) |
ic (<expression>) |
uc { <expression>)

fengtn has one argument, string, and produces a num-
ber, the length of that siring, as its result.

floor has one argument, a number, and returns that
number with the fractional part deleted as its result.

ic has a string as its argument and returns that string
with all its upper-case letters converted to lower-case.

G has a string as its argument and returns that string
with all its lower-case letters converted 10 upper-case.
2.3.2 Boolean Built-in Functions

Boolean built-in functions return conditions as results:
they succeed or fail. They are used primarily to test the
state of the HUGO system and of the user’s program.

<Boolean built-in function call> —
not { <Boolean expression>)

not has a condition, a Boolean expression, as its argu-
ment. not succeeds oniy if its argument fails.

2.3.3 Named String Constants

Some built-in functions serve as convenient represenia-
tions of commonly used values which might otherwise be
difficult to express.

<built-in function call> —
tab | bks |
char-string | digit-string | alpha-string |
ic-alpha-string | uc-alpha-string

The functions bks and tab return the command deli-
miter, the backspace character and the tab character
respectively. :

char-string returns a string containing all possible input
characters. digit-string, alpha-string, Ic-alpha-string and
uc-alpha-string return 2 string containing all digits, ali
letters(both upper- and lower-case), all lower-case let-
ters, and all upper-case letters respectively.

3 Statements

The purpose of HUGO programs is t¢ do something.
Expressions provide the objects with which, or to which,
things are done, but statements tell the computer what
to do.

The statements associated with major features of the
language are described with those features. The state-
ments defined in this chapier ars those which perform
general control functions.

<statement> —»

<assignment statement> |
<add statement> |
<conditional statement> |
<repetitive statement> |
<output statement> |
" <put statement> !

<user statement> |

<then statement> |

<character format statement> |
<paragraph start statement> |
<paragraph format statement> |
<table definition statement> |
<page format statement> |
<rescan statement> |

<stop statement>

Examples of statements:

/ This loop deletes all leading
asterisks from the variable "string”
by setting up & counter ”i” and with
a loop counting it up to
the first non-asterisk.
And then taking the end of the string
starting at where the counter points.
assign 1 to i
loop
exit-if i gt lemgth(string)

/ If tae string is all asterisks we don’t

/ want to run off the end of it.
exit-if string(i) isnt *‘*’

add 1 to i

end-loop
assign string start-at i to string

P

3.1 Assignment and Add Statemenis

An assignment statement is used to change the value of
a variable to that given in an expression.

<assignment statement> —
assign <expression> to <variabie>

An add statement is used o increment the value of a
variabie by that given in an expression.

<add statement> —
add <expression> to <variable>

3.2 Conditional Statements

Conditional statements provide aiternative paths of exe-
cution through a HUGO program. They contain within
them other statements, possibly including other condi-
tional statements, which may or may not be executed
depending on the success or failure of a given Boolean
¢xpression.

<conditional statemeni> —
if <Boolean expression>
{ <statement> }
{ else-if <Boolean expression>
{ <statement> } }
[else
{ <statement> }]
end-if
The conditional statement consists of a sequence of Boo-
lean expressions, each with a group of statements follow-
ing it. The Boolean expressions are evaluated in order
until one returns success. Then the following group of
statements is executed. And then execution resumes fol-
lowing the end-if.

If no Boolean expression of the conditional statement
returns success, then the group of statements following
the sise is executed, if it exists. If the else is absent, no
action is taken. In either case execution resumes follow-
ing the end-if.

3.3 Repetitive Statements

Repetitive statements allow a given group of statements
to be executed repeatedly. For example, all the charac-
ters of a string may be examined for some condition by
repeating a group of statements for each character.

<repetitive statement> —
loop
{ <statement> |
exit-if <Boolean expression> }
end-loop

The components of a repetitive statement are executed
repetitiously until a component exit-if is encountered
with a Boolean expression that yields success.

3.4 Simpie Input and Output

Input and output for a HUGO program are normally
provided by the text editing and photocomposition fea-
tures of the language. However, a simpler form of input
and output is provided, closer to that of the usual proce-
dural programming language. It may be used for
dynamically parameterizing the HUGO program, for
providing the user with messages as to the state of the
program’s progress, for creating a contents listing or
index of the job, or for producing statistics which can be
further processed by an accounting system.

Exampies of input and output statements:

output time-of -day
/ prints the time of execution
/ on the line printer
put ‘INDEX’,index-word
j puts the current value of
/ "index-word” on the system
/ file called “INDEX"
assign input to record
/ method of inputting from the
/ user’s parameter file.
/ "input” is a built-in functiom

32.4.1 Input

Two built-in functions are provided for input.

3 Statements

<built-in function call> — input
<Boolean built-in function call> — eof

input returns a string containing the characters of the
next line of the parameter fiie for the job. All trailing
blanks and carriage return characters are deleted from
the resuitant string.

eof returns a Boolean result. It succeeds if, and only if
the iast input executed found no more lines in the
parameter file. In this case, the cail to input would have
returned a zero-iength result, as if it had read a blank
line.

3.4.2 Output
<output statement> — Output <expression>
The expression is placed on a line on the message listing
of the program.
3.4.3 The Get Function
<buiit-in function call> — get (<expression>)

get has an argument indicating the name of the file from
which a line of text is to be returned. The file names
available are determined by the manner in which the
HUGQO program is invoked from its environment. The

lines returned by get do not have any trailing characters
removed, as is the case with input.

When there are no more iines to be read from the speci-
fied file, the get function returns a zero-length string.
Because blank lines in text files must otherwise have at
least a blank character or a carriage return character on
them, a zero-length line uniquely determines the end-of-
file condition.

3.4.4 The Put Statemeat

<put statement> —
put <expression> , <expression>

The first argument of the put statement specifies the
name of the file on which the second argument is to be
placed as a line of text. The expression is extended with
blanks to satisfy the requirements of the file onto which
it is put. The file names available are determined, as
with the get function, externally to HUGO.

3.5 Then Statements

The then statement does absoiutely nothing. It can be
used to terminate or separate other statements to
increase the readability of the program.

<then statement> — then

10

4 Declarations

Most types of names must be declared. That is, the
HUGO system has to be told what they are. Immedi-
ately following are definitions of the declarations for
variable and function names and for user-defined state-
ments.

<declaration section> —»
<global declaration section> |
<list declaration section> |
<function declaration section> |
<user declaration section>

4.1 Variable Deciaraticns

Variable declarations are used to declare global, local
and list variables.

4.1.1 Globals

Global variables are used to save away values. They have
the scope of the rest of the program following the vari-
able deciaration which contains them.

<global declaration section> —
global <global variable declaration>
{, <global variable declaration> }

<globai variable declaration> —
<global variable> [<type>] [entry]
[starts-as <expression> | |
<global variable> [<type>] [entry]
literally <expression>

The expression following the starts-as or literally, if
present, provides an initial value for the variable. This
initial value is calculated and given to the variable only
once at the start of program execution. No variable may
be used in an expression unless it is first given a value by
a starts-as, literally, an assignment statement or by being
a parameter (of a function or define).

When declared with a literally specification, a variable
may not have its value changed by an assignment or add
statement or by a to-global patiern parameter.

The “type” and entry options in the global variable dec-
laration are described in sections on type declaration and
segments, respectively.

4.1.2 Locals

Local variables are used to save away values. They have
the scope of an individual program section following the
variable declaration which contains them. Local vari-
ables constitute an exception to the rule that names that
can appear in expressions must be unique within a pro-
gram. The declaration of a local variable in a program
section temporarily suspends the scope of any global
variable or function name using the same identifier.

When a program section is entered, its local variables
are created, and must be given new values before any use
is made of them.

<local declaration group> —
local <local variable declaration>
{, <local variable declaration> |

<local variable declaration> —
<local variable> [<type>] [static]
[starts-as <expression>] |
<local variable> [<type>]
literally <expression>

The effect of the starts-as or literally specification is the
same as with global variables, except that iocal variables
are given their initial values each time they are created.
As with global variables, local variables declared with
the literally specification cannot have their values
changed by an assignment or add statement.

The effect of the optional type declaration is described
later in this chapter.

The effect of the optional static specification is to keep
the associated local variable from being created anew
every time the program section to which it belongs is
entered. The local variable is created once, when the
HUGO program is started. If it is declared with a
starts-as to give it an initial value, the initial value is
evaluated only once at the start of the program and only
assigned to the local variable at that time. Thus, because
static local variables keep their values between succes-
sive uses of a program section, they can be used like glo-
bal variables to record the past history of a HUGO pro-
gram. Unlike globals, however, their scope is the
program section to which they belong and so may be
used to improve the organization of a HUGO program.

Another important use of static local variables is in a
user-defined function or statement or in an if-you-find
section that contains a table definition statement.
Because most of the tcol entries of a table definition are
usuaily used after the program section in which it is
defined has completed execution, local variables can nor-
mally not be used to define these entries, as local vari-
ables normally cease to exist on exit from a program sec-
tion. static local variables, however, continue 1o exist
throughout the execution of the whole HUGO program
and so may be freely used in table definitions.

4.1.3 Lists

<list declaration section> —»
list <list name declaration>
{, <list name declaration> }

<list name declaration> —
<list name> [<type>] [entry]

<list variable> - <list name> (<expression>)

A list is a group of elements, each of which can be used
as a global variable. Any element of a list can be used,
assigned to, and added to as if it were a global variable.
A list variable is used to access an element of a list, and
is specified by providing a list name together with an
expression which is evaluated to provide a key which
identifies the required element. Each unique key
accesses a different element of the list.

A list initially has no elements. A new element within a
list can be created by simply assigning a value to it. As
with a global or local variable, an element of a list can-
not be used or added to uniess it has first been created
by assigning a value to it.

4 Declarations

As with global variables, the optional type and entry
declarations are described elsewhere. Also as with glo-
bals, the scope of a list is the entire HUGO program fol-
lowing its declaration.

A special use of lists is described in the chapter on Text
input.

4.1.4 List Enquires

To allow the more convenient manipulation of lists the
following operators and buiit-in functions have been pro-
vided.

<factor> —
<factor> th-elem <list name>

<Boolean factor> —
<expression> is-in <list name> |
<expression> isnt-in <list name>

<built-in function cail> — list-size { <list name>)

The list-size function returns the number of distinct ele-
ments in the list named by its argument.

The th-elem operator can be used to access the keys used
to identify the elements of the list named in its second
argument. The elements are arbitrarily numbered from
one to the number of elements in the list, and the first
argument of the th-elem operator is used to indicate by
this number the key required. This operator is most use-
ful for sequencing through all the clements of a list.
Because creating new elements in a list may change the
arbitrary numbering of the existing elements, care
should be taken in the use of this operator. It is an error
to attempt to access a key outside the range indicated for
this operator.

The is-in Boolean operator succeeds if the first argument
is the key of some already existing element of the list
named in the second argument, and fails otherwise. The
isnt-in operator succeeds/fails if is-in would have
failed/succeeded.

Examples of variable declarations and their use:

/ These declarations are of the simple sort
/ most commonly found in HUGO programs,
/ with no type, ENTRY or STATIC parts.
Global page-number starts-as 1,

counter / not given an initial value.
List L
Initially

Local element starts-as 1

/ Using the counter called ELEMENT,

/ this loop gives vaiues to nine

/ elements of the list called L.

/ These values are not very useful, as

/ they are just their keys enclosed

/ in asterisks.

/ So, for exampie, the value output by

/ the OUTPUT statement at the end

/ of this example is ‘*4*’.

Loop

Assign ‘°®’ cat element cat ke

to L{element)

Add 1 to element

Exit-if element ge 10
End-loop
Cutput L(4)

11

4.2 Functicns

A user-defined function is 2 HUGO program segment
which defines how a value is to be produced. It may or
may not have values passed to it through a parameter
list, and it must return a single value. This value can be
accessed by a function call in an expression.

<function declaration section> —
function <function name>
[<type>] { entry] [static]
[starts-as <expression>]
[with <parameter declaration>
{ , <parameter declaration> }]
{ <local declaration group> }
{ <statement> }

<parameter declaration> —»
<local variable> [<type>] [static]

<function call> —
<function name> |
<function name>
{ <expression> { , <expression> })

The local variables in the parameter declarations of the
function are called the function’s parameters. The
expressions in the function call are assigned, one at a
time, to the function’s parameters when the function cali
is executed. The number of expressions and of parame-
ters must be the same. The parameter declarations con-
stitute the parameters’ declaration as local variables.
The use of the static option in a parameter declaration
means that, as with other local variables, the deciared
variable will retain its value even after execution of the
function is terminated. This is especially useful when
table definitions appear within the function. Note, how-
ever, that a new call to a function will destroy the old
values of its parameters.

The function name has two uses. Within the function it
is used as a local variable. The last value assigned to it
within the function becomes the resulting value of the
function. A function must return some value.

Qutside of the function, in a scope extending from the
end of the function declaration to the end of the pro-
gram, the function name represents the function and
may be used within function calls.

Note that the above definition prevents a function from
calling itself and from calling another function which
calls the first function.

The starts-as expression which optionally follows the
declaration of the function name can be used to initialize
the value of the function name at each use of the func-
tion, and may, if desired, provide the function’s result
value. If the static option is used with the function name,
the local variable created to represent the function’s
result will behave like any other local variable. The
effect of the type option on this local variable is
described later in this chapter.

The entry option changes the scope of the name and is
described together with segments.

4 Declarations

Example of 2 function declaration section:

/ This function deletes all trailing
/ asterisks from its argument.
function trim with string
jocal i starts-as length(string)
ioop
exit-if 1 le O
/ i.e. if string is all asterisks.
exit-if string(i) ne *‘*’
assign i minus 1 to i
end-1lo0p
assign string(l,i) to trim

4.3 User-Defined Statements

User-defined statements allow the user to extend the
HUGO language with statements of his own design. The
user-defined statements are declared in a similar fashion
to functions, except that they perform a sequence of
actions without returning a result.

<user declaration section> —
define <user statement name>
{ entry]
[with <parameter declaration>
{ , <parameter declaration> 1]
{ <local declaration group> }
{ <statement> }

<user statement> —
<user statement name> |
<user statement name>
<expression> { , <expression> }

<user statement name> — <identifier>

The meaning of parameter declarations, and the param-
eter passing mechanism of user declarations is the same
as for functions except that the expressions, if any, in the
call (user statement) are not surrounded by an extra set
of parentheses.

The entry opticn is defined in the section of the report on
segments.

The scope of the user statement name declared is the
whole program following the end of the user declaration
section.

Example of a user declaration section:

define superior with text
save a
baseline -0.6 ex
setsize 80% ex
set text
restore a
/ superior ‘superior’ will set FUDEDOL

4.4 Type Declarations

Numbers in HUGO are just special cases of strings.
There is no requirement to provide any special declara-
tions for numbers, and their use is always implied by
their coniext, such as when they are added together.
However, 2 particular implementation of HUGO may
very well use more than one internal representation for
strings, depending on how they are used, in order to
improve the speed of HUGO programs when they are
run on a computer. The best representation will usuaily
be chosen automatically, without any need for HUGO
programs to provide the HUGO system with any data
type declarations.

12

The average user of HUGO should not be too concerned
with the speed of his programs, except that he should
attempt to use good programming techniques, such as
those grouped under the name “Structured Program-
ming”. But in programs which are expected to receive a
iot of use, the HUGO user may wish to help the system
by indicating the way in which variabies are used. This is
done by including type attributes in global, local, func-
tion, parameter and list declarations and by using the
string and number built-in functions.

4.4.1 Type Attributes in Variable Declarations
<type> —» string | number

The string attribute indicates that the declared variable
is used primarily in non-numeric contexts such as the
argument of set, output, cat or is. The HUGO system
will generally be required to do less work to process the
variable in these cases. The variabie can still be used in
numeric contexts, but this may require more work on the
part of the HUGO system.

The number attribute indicates that the declared vari-
abie is used primarily in numeric contexts such as arith-
metic computations, repetition counts, substring argu-
ments, and size specifications. A similar effect on the
speed of execution results to that from using the string
attribute. However, although numbers can be stored in
strings, variables declared with the number attribute can
only be used to store strings which conform to syntax of
numeric constants. Furthermore, strings assigned to
number variables may be stored as an equivalent
numeric value. For sxample, leading, non-significant
zeros may be removed from the value. And only three
decimal places may be retained in the number.

There is one reason for using type attributes other than
improving the execution speed of a HUGO program.
This reason is that the use of a type attribute in a vari-
able declaration may help a person reading the program
10 better understand the function of the variable, and so
may serve a documentary purpose.

The use of 2 type attribute in a list variable declaration
applies to the values of each of the elements of the list.

Example using type declarations:

/ This function expects & number between
/ 1 and 3999 as its argument and returns
/ the number in roman numerals.
/ It uses type declarations as it is
/ designed to be used by 2 large number
/ of HUGO programs and it is worthwile
/ to have it run efficiently.
Function Roman-Numeral string with N number
Local p number starts-as 3,
power-of -10 number starts-as 100,
digit number / to hold each digit.
Assign
floor(N div 1000 modulio 10) of ‘m’
to Roman-Numeral
Set up the thousands.
This loop sets up the hundreds,
tens and ones.
Note that 1 is i, 2 is ii, 3 is iit
4 is iv,
5 is v, 6 is vi, 7 is vii, 8 is viii
and 9 is ix.

B N

4 Declarations

Assign
floor(N div-by power-of-10
modulo 10)
to digit
If digit 1t 4
Assign Roman-Numeral cat
digit of ‘ixc’(p) to Roman-Numeral
Else-if digit eq 4
Assign Roman-Numeral cat
‘ixc’(p) cat ‘vid’(p)
to Roman-Numeral
Else-if digit 1t ¢
Assign
Roman-Numeral cat ‘vid’(p) cat
digit minus 5 of ‘ixc’(p)
to Roman-Numeral
Eise / if digit eq 9
Assign Roman-Numeral cat
‘ixc’(p) cat ‘xcm’(p)
to Roman-Numeral
End-if
Exit-if p le 1

13

Add -1 to D
Assign power-of-10 div-by 10
to power-of-10
End-1lcop

4.4.2 Type Built-in Functions

<built-in function call> -
string { <expression>) |
number (<expression>)

A type built-in function is used to indicate to the HUGO
system that its argument should be converted to the
representation most suited to the given type. These func-
tions are most useful when assigning a value to a vari-
able whose type has not been given in its declaration. in
this case some improvement in the execution speed of
later uses of the variable may result, though not as much
as if the variable had been declared with the appropriate
type attribute, in which case the use of these built-in
functions is not required.

14

S Programs

5.1 The Program

A HUGO program is a complete specification of the
process which will phototypeset 2 given form of input in
a given format. The program consists of a sequence of
program sections, each of which specifies some compo-
nent of the overall process.

<HUGO program> —
{ <program section> | <segment> }
end-hugo

<program section> —
<set-up section> |
<declaration section> |
<if-you-find section> |
<user-code section> |
<first-layout section> |
<layout section>

An example of a complete HUGO program is included
in an appendix.

5.2 Set-up Sections

These sections are intended to be used for purposes
related to typesetting other than typesetting itself.

<set-up section> —
<initially section> |
<finally section> |
<at-start section> |
<at-end section> |
<at-job-start section> |
<at-job-end section> |
<at-page-start section> |
<at-page-end section>

5.2.1 Program Initiaiization and Termination

The initially section contains all the set-up statements
that are to precede the execution of the first layout. The
primary purpose of the initially section is to establish a
set of default conditions for the job. More than one ini-
tially section can be coded, in which case each one is
executed successively in the order in which it appears in
the HUGO program.

The finally section is similar to the initially section
except that it is executed after the last layout of the job
has been completed. Note that this means that a finally
section cannot be used to specify any part of the format
of the last page of the photoset output. The primary pur-
pose of the finally section is the gathering, recording and
display of statistics and accounting information for the
job.

<initially section> —
initially
{ <local declaration group> }
{ <statement> }

<finaily section> —
finally
{ <local declaration group> }
{ <statement> |

5.2.2 Special Program Coatrol

In addition to the requirements of an individual typeset-
ting job, a HUGO program may have to satisfy the
requirements of its users in terms of messages printed-on
the message listing, the recording of information for
accounting purposes, and the imposition of local restric-
tions on the typesetting job. This may need to be done on
a per-job or per-page basis.

To fulfill these reguirements, HUGO program frag-
ments can be “packaged” for later recall and inclusion
into each HUGO program. These fragments or packages
can be used together with the simple input and output
facility, with the segment facility, and with the source
library include feature provided by the HUGO compiler.
Four sections are provided in HUGO specifically for this
purpose:
<at-job-start section> —
at-job-start
{ <local declaration group> }
{ <statement> }

<at-job-end section> —
at-job-end
{ <local declaration group> }
{ <statement> }

<at-page-start section> —
at-page-start
{ <local declaration group> }
{ <statement> }

<at-page-end section> —
at-page-end
{ <local declaration group> }
{ <statement> }

The at-job-start sections are executed before any other
part of the HUGO grogram, even before the initially
sections. The at-job-end sections are executed after any
other part of the HUGO program, including the finally
sections. The at-page-start sections are executed
immediately before and the at-page-end sections
immediately after the execution of each layout in & job.

1f more than one of the above kinds of section appears in
a HUGO program, the sections are executed at the
appropriate time in the order in which they appear.

5.3 Segmeats

<segment> —>
segment
{ <program section> }
end-segment

A segment is a group of declarations and program sec-
tions that logically belong together. For example, a par-
ticular HUGO program may be written in which two
user-defined statements use a global variable in com-
mon. The user-defined statements and the global vari-
able can be defined together in a segment. Grouping the
related eiements together, and making the global vari-
able inaccessable outside the segment will produce a pro-
gram that is easier to read and to keep free of program-
ming errors.

5 Programs

Global variables, lists, functions and user-defined state-
ments declared within a segment wiil not be usable out-
side that segment unless they have the optional entry
attribute included in their declaration. Objects declared
in 2 segment without the entry attribute can be used
freely within that segment, but only there.

The scope of global variables. lists, functions and user-
defined statements declared within a segment but with-
out the entry attribute is the rest of the segment follow-
ing their declarations. The names of such objects
declared without the entry attribute can be reused out-
side their segment in other global variables, lists, func-
tions and user-defined statements. But these other decla-
rations have a scope which excludes that of the variable
within the segment so that no conflict resuits. The scope
of global variables, lists, functions and user-defined

statements declared inside 2 segment and with the entry
attribute is the same as if they were declared outside a
segment.

It is an error to use the entry attribute in a declaration
outside of a segment.

5.4 The Stop Statement
<stop statement> —» Stop

The stop statement terminates the execution of the
HUGO program without any further statements being
executed, and without the current layout, if any, being
completed. It may cause the current line or page of text
to be lost and should only be used when the HUGO pro-
gram encounters a SeVere error in its processing.

16

6 Characters

6.1 Setting Characters

It is in the typeset characters and the way they are
represented on input that the HUGO system is most
dependent on the input and output devices attached to
the computer on which HUGO is running. Characters
can be keyed either as singie keystrokes or as sequences
of keystrokes. Characters can aiso be generated by the
HUGO program and typeset using the set statement.

6.1.1 Types of Characters

A singie keyed character of text will normalily produce a
single character of composed text. But due to the limita-
tions of most keyboards and computer character sets,
sequences of keyed characters may need to be inter-
preted as single entities. And a character or sequence of
characters may represent an action other than setting a
certain character: it may represent 2 spaceband, “tab”
or backspace action or it may have a meaning defined in
the HUGO program.

Whenever a character is being set by a set statement or
from the input text the characters following it are exam-
ined to find the longest sequence of characters starting
with the character being set and with a defined meaning.
When found, this longest sequence is set as a single
entity. A backspace character, when not part of a
defined sequence, will cause the characters resuting from
the input characters or sequences either side of the
backspace to be set centered over each other. The width
of the result will be that of the character or sequence
preceding the backspace.

6.1.2 The Set Statement
The set statement allows the explicit setting of text.

<character format statement> —
set <expression>

The characters in the evaluated expression are set one by
one, and for each the defined action is taken. The char-
acters are set without further processing by any
i#-you-find. Any predefined input sequence of characters
must be entirely within one set statement to be recog-
nized as a single entity. Otherwise its components will be
set as individual characters.

Any text not matched by an if-you-find will be automati-
cally set by HUGO. Predefined input sequences will be
found and processed according to their predefinitions so
long as all component characters of the sequence are
contiguous in the text without any if-you-finds being
actioned between the elements.

Examples of set statements and predefined input
sequences:

set ‘A’ / output will be A
set ‘“<a’ / output will be a
set ‘a<’’ / output will be 2
set ‘é° / output will be &
set ‘(<«f' / output will be <«

/ (predefined meaning)
get ‘O<x’ / output will be #
get ‘a<bec’ / output will be »

6.1.3 User-codes

The user-code section defines the action associated with
an individual character or with a specific sequence of
input characters. These actions can be either redefini-
tions of the graphical representation of characters or
sequences, or ihey <an be input forms of various com-
mands, especially the mode-change commands such as
bold and italic. They car aiso, of course, be more com-
plex combinations of these actions.

<user-code section> —
user-code <expression> [only]

{ , <expression> [only]}

{ <local declaration group> }

{ <statement> }
The expressions are evaluated during the execution of
the at-job-start sections of the HUGO program, but the
statements are only executed whenever one of the
defined characters or input sequences are encountered in
a set statement. The expressions must evaluate to a
string whose associated action is to be defined.

The user-code section is entered when an attempt is
made to set a certain user-code-defined character or
combination. It allows HUGO's predefined action for
that character or combination to be overridden. The
user-code is used only after the text editing facility has
processed the input text through the if-you-finds.

If a user-code section specifies one or more expressions
to be defined, then each such character or combination
is given the same meaning. This is to allow more than
one “spelling” of a code to be defined easily. When the
only option is specified together with an expression, then
that character or combination is not only given a new
definition, but any previous definition of a longer char-
acter sequence which has the given character or
sequence as its start loses its previous definition. So it
can be specified that a user-code is to be recognized by
HUGO even when part of a longer sequence.

Examples of user-code sections:

user-code ‘;°
set ‘.’
user-code "A” : bks : "T”
bold
set ‘@’
roman
user-code ‘--’
set ‘=’
user-code «/»
if italic roman else italic end-if
/ Paired slashes will put the
/ enclosed text into italic.

6.1.4 Case Shifting

Under certain circumstances the case in which alpha-
betic characters are entered into the system may not be
that in which they are to be typeset.

<character format statement> —
shift-up |
shift-down |
no-shift

6 Characters

shift-up causes all alphabetic characters to be set in
upper case until otherwise specified. shift-down causes
them to be set in lower case. no-shift causes them to be
set in the case in which they are entered.

Examples of case shifting:
shift-up
set ‘abcABCl’ / output will be ABCABCIl
no-shift

set ‘abcABCl’ / output will be abcABCl

6.2 Character Attributes

Character attributes determine the size, shape and style
of typeset characters. Those attributes available depend
on the fonts currently available at a particular installa-
tion. However, HUGO will substitute an approximation
for those attributes not available. If the typesize asked
for is larger than any available, then the largest avail-
able will be substituted. If there is no italic font available
in the selected family of typefaces, then a roman font
will be substituted.

6.2.1 Font and Typesize

Font family and typesize can be sclected in one com-
mand, or the typesize can be changed without affecting
the current font.

<character format statement> —
times <expression> [., <expression>] |
modern <expression> [, <expression>] |
excelsior <expression> [, <expression>] |
helvetica <expression> [, <expression>] |
old-helvetica <expression> [, <expression>] |
perma <expression> [, <expression>] |
pedford <expression> [, <expression>] |
setsize <expression> { , <expression>] |
font <expression> , <expression>

[, <expression>]

The two expressions select a typesize for all but the font
statement. When the second, optional, expression is
omitted it is taken to be the same as the first. The first
expression is the required setheight and the second, the
setwidth.

The name of the statement selects the font in the case of
times, modern, excelsior, helvetica, old-helvetica,
perma and bedford. In these cases the roman medium
member of the indicated family is selected. The setsize
statement ieaves the font unchanged. The font statement
uses the first expression to select the font and the second
and third expressions to select the typesize. The font
numbers available depend on the phototypesetting equip-
ment used.

Examples of change of font and setsize:

helvetica 12

set *‘abcABCl’ / output will be abcABC1
modern lem

set ‘abcABCl’ / output will be abcABCl
excelsior 10 by 8

set ‘abcABC1’ / output will be abcABCl
times lex, lem

set ‘abcABCl’ / output will be abcABCI

6.2.2 Boidface and Italic Type

Members of a font family can be selected with further
character format statements.

17

<character format statement> —»
roman |
italic |
boid |
medium

roman means “not italic”, medium means “not bold”, so
the four combinations roman medium, italic medium,
bold roman and boid italic are all meaningful. Note that
if the current font is boid roman then the roman state-
ment alone will effect no change and that the italic state-
ment alone will change the font to the bold italic mem-
ber of the current font family.

Other attributes that could be added to HUGO are, for
example, ultra and condensed.

Examples of bold face and italic:

times 8 point
set ‘abcABC1l’ / output will be abcABCI

bold

set ‘abcABC1’ / output will be abcABCI1
italic

gset ‘abcABCl’ / output will be 2bedBCI
medium

set ‘abcABCl’ / output will be abcABCI
/ change in font cancels any

[bold face and italic

helvetica 8 pt

set ‘abcABCl’ / output will be abcABCi

6.2.3 Slanting and Repositioning Type

. <character format statement> —
slant <expression> |
baseline <expression> |
fudge <expression>

The slant statement allows characters to be slanted
somewhat in the manner of italic type. The expression is
the amount of slant in degrees, positive angies slanting
the character to the right, negative to the left.

The baseline statement vertically offsets characters
from the zero baseline. The zero baseline is that which
would be in effect if no baseline statement had been exe-
cuted. The baseline statement always measures its offset
from this zero baseline rather than the baseline currently
in use. It can be used to set inferior and superior type
when used in conjunction with the setsize statement. A
positive value in the expression sets type below the zero
baseline and a negative value sets type above the zero
baseline.

The fudge statement horizontally offsets characters
which are centred over previous characters in the text
stream. It can be used to correct misplaced accents. The
argument is the distance by which the overstriking char-
acter is displaced to the right of its normal position. This
“normal position” is determined by the design of the
characters supplied on the photosetter and can be fur-
ther adjusted by tables internal to the HUGO implemen-
tation which are used to select the best accent positions
for a specific installation.

Setting the slant, baseline or fudge to zero resets it to its
normal value.

6 Characters

Examples of using siant, baseline and fudge:

slant 12
set ‘abcABCl’ / output will be abcABCI
slant ©
set ‘abcABCl’ / output will be abcABCl
set ‘abc’
baseline 20% ex
set ‘ABC’
baseline O
set ‘1’ / output will be abcapcl
set ‘é’ / output will be &
fudge -5% em
set ‘é’ /[output will be &
fudge 1 em
set ‘@’ / output will be e

6.2.4 Small Capitals

<character format statement> —
smali-caps |
normai-case

When the small-caps statement is encountered, HUGO
starts setting all lower-case letters as capital letters of a
smaller size. This form of text is usefull in certain types
of headings, and is rarely used in running text. The
normai-case statement restores the normai mode of set-
ting lower-case letters.

Example of small capitals:
times 10 pt small-caps set ‘Small Capitals’

/ output will be SMALL CAPITALS
6.3 Quads

<character format statement> —»
quad <expression> |
quad-to <expression>

The quad statement allows the user to set a fixed-size
horizontal space, called a quad space, in a line of text.
The expression specifies the size of the space. This size
may be a negative number.

A quad space produced by the quad statement can be
backspaced over a character or can have a character
backspaced over it. Because the first item in a backspace
combination determines the combination’s width, a quad
backspaced over a text character has no effect, whereas
a character backspaced over a quad takes on the width
of the quad space.

The quad-to statement creates a quad space of sufficient
size 10 ensure that the next text set after it on the same
line is at the distance from the left-hand end of the line
specified by the given expression. Any position in the
line can be specified, even if it has already had text set at
that position. A gquad-to prevents any spacebands
preceding it on the same line from being expanded by
justification. On the other hand, quad-out, quad-with
and quad-with-rule statements preceding the guad-to
are actioned to the extent that the quad-to places extra
space in the text line.

quad-to can be used to help “decimal align” numbers in
tables. The number should have a quad-out preceding it
to position the part of the number before the decimal
point adjacant to the decimal point. Then the part of the
number preceding the decimal point should be set. A

quad-to should be executed to position the decimal
point, following which the decimal point and the rest of
the number should be set.

Quad spaces of both sorts may cause any upcoming text
to be set to the left of the normal start of the line by
their specifying appropriate negative values.

6.4 Character Enquiries

A number of built-in functions and operators are pro-
vided to allow the HUGO programmer tc enquire as to
various aspects of the current state of the system and to
express sizes in a convenient form. Statements which
parameterize the composition usually require sizes of
some sort. Where sizes are required, they must be
expressed in points. The various operators in section
6.4.1 provide the necessary conversions to express sizes
in other units.

Some built-in functions are provided to ease access to
various characters which may otherwise be difficult to
express in a HUGO program.

6.4.1 Sizing Operators

All expressions that provide a height, a width or some
other size are considered by HUGO to be in points. Siz-
ing operators allow the use of other units of measure-
ment.

<subfactor> —

<subfactor> ems |
<subfactor> ens |
<subfactor> thins |
<subfactor> ex |
<subfactor> picas |
<subfactor> points |
<subfactor> inches |
<subfactor> cm |
<subfactor> mm

<factor> =
<factor> pp <subfactor>

These operators convert their subfactor argument into
points from the unit of measurement indicated by the
operator. The units of measurement are:

(a) ems: the current setwidth,

(b) ens: half the current setwidth,

(c) thins: a quarter of the current setwidth,

{d) ex: the current setheight,

(e) picas: 12 points,

(f) points: 1 point,

(g) inches: 72.29 points,

(h) cm: 28.46 points,

(i) mm: 2.846 points.

(j) pp: the first argument is picas and the second,

points.

Examples of using sizing operators:

Width 20 picas

Times 8 on 10 / i.e points

Layout pagel 8.5 inches, 11 inches
/ 8 1/2 by 11 inch page

Body 22 cm / deep

6 Characters

6.4.2 Character Functions

<built-in function cail> —
baseline |
font |
fudge |
slant |
width-of { <expression>)

<Boolean built-in function call> —
bedford |
bold |
excelsior |
heivetica |
italic |
medium |
modern |
normal-case |
old-helvetica |
perma |
roman |
smail-caps |
times

19

The functions bedford, bold, exceisior, heivetica, italic,
medium, modern, normai-case, old-helvetica, perma,
roman, small-caps and times test the current typesetting
environment. They succeed only if the character attrib-
ute to which they refer is currently in effect.

The functions baseline, fudge and siant have no argu-
ments and return the currently specified baseline offset
(in points), fudge value {in points) and character slant
(in degrees) respectively.

The font function returns the number of the font cur-
rently in effect. The numbers returned are those used by
the font statement. The bold and itaiic attributes may or
may not affect the font number, depending on the photo-
typesetting equipment used.

The width-of function has one argument, a string of
characters and predefined keying combinations, and
returns the width in points that those characters will set
in the current font and setsize.

Example of using character status functions:

if italic roman eise italic end-if
/ As in example in chapter 6.1.3

20

7 Lines

7.1 Basic Line Makeup

Characters when set are made up into lines. A line is ter-
minated either explicitly or implicitly by the HUGO
program, or by overflowing the maximum width speci-
fied for lines. When a line overflow condition causes
breaking, the system chooses where to make the break
based on its judgment of suitable breaking points. If it
breaks a word cn a syllable boundary it will insert a
hyphen. If it breaks on a spaceband it will delete that
spaceband. If it can find no suitable place to break it will
pack the line as tight as possible and break without
hyphenating.

Line makeup can be made very simple, by just specifying
a suitable line width and explicitly terminating lines
where appropriate, or it may be quite elaborate, using
the various options described in this chapter and the
various forms of paragraph makeup in chapter 8.

<line format statemeni> —
width <expression> |
finish-line |
turn-over

The width statement specifies the maximum line width
on which characters can be set.

The finish-line statement explicitly terminates a line of
text and justifies the line as if it were the last line of a
paragraph. Many other statements and conditions also
terminate text lines implicitly, as does line width over-
flow. Examples of such statements are the at statement,
any paragraph start statement, and the end of a layout.

The turn-over statement explicitly terminates a line of
text, but justifies the line as if it were an intermediate
line of a paragraph.

7.2 Line Justification

Lines of text can be set in a number of ways. In printed
work it is usual to set straight text justified over the line
width and headings centred or flushed to the left margin.

<line format statement> —
centre |
flush-left |
flush-right |
force-justify |
justify |
justify-centre |
justify-right
The methods of line setting indicated are:

(a) centre: Centre the text on the line width.

(b) fush-left: Place the text lined up on the left end
of the line and space out the right side.

(¢) flush-right: Place the text lined up on the right
end of the line and space out the left side.

(d) force-justify: Justify the text on the full line width
by expanding the spacebands and fillers in the
line.

(e) justify: Justify all lines of a sub-paragraph but the
last. Flush-left the last line. See chapter 8 for the
definition of sub-paragraphs.

() justify-centre: Justify all lines of a sub-paragraph
but the last. Centre the last line.

(g) justify-right: Justify all lines of a sub-paragraph
but the last. Flush-right the last line.

Examples of paragraph justification:

This paragraph is set flush-right on all its lines. The nor-
mal paragraphs in this manual are set using the defauit
of justify. The chapter headings are centred. And the
examples and syntax rules are set using flush-ieft.

7.3 Variable Space in Lines

For a line to be justified, there must be places where
extra space oOr text can be inserted.

7.3.1 Space Bands

Space bands can be introduced into the text either by
setting the space character or by use of the explicit
spaceband and vari-space statement.

<line format statement> —
spaceband |
vari-space |
sb-ratio <expression> |
sb-step <expression>

A spaceband has some minimum width. Justification
may increase this width by equally distributing all the
extra space in a line amongst the spacebands. The
sb-ratio allows the user to change the minimum size of a
spaceband. Its expression argument specifies the space-
band size as a proportion of the setwidth when the space-
band is set. It is usually used in flush-left text where the
normal spaceband is too narrow or with the Bedford
monowidth font where it is best to have the spaceband
the same width as a character.

The sb-step allows the user to change the increment of
space that is used for justification. The extra space
added to a spaceband will always be an exact multiple of
the size specified by its expression argument. sb-step
can be used when it is desirable to justify text set using a
monowidth font, in which case it is used to ensure that
any justification space added is in a multiple of the char-
acter width, so simulating the same operation on a type-
writer or a computer’s printer.

1t should be noted that a spaceband is explicitly not a
character, but rather the space between characters. It
establishes a condition by which space is placed beween
characters. This is why a spaceband does not create

" space when it falls on an output line boundary; it is not

“between” any thing. And it is also why more than one
spaceband in a particular position will act exactly as one
spaceband; the condition exists whether it is specified
once or many times.

A vari-space is similar to a spaceband except that it
cannot be used as a breaking point.

7.3.2 Space-Filling and Leadering

Space and leader-filling can be used to provide line jus-
tification with a point at which all extra space is to be
placed. If a space or leader-{ill point is placed in a line
the spacebands are ignored by line justification. The
minimum space occupied by a fill point is zero.

7 Lines

<line format statement> —
quad-out |
quad-with <expression> [, <expression>] |
flush-left-with <expression>
[, <expression>] |
justify-with <expression>
[, <expression>]

quad-out provides a place at which all remaining space
may be placed.

quad-with provides text and a fill-point at which that
text can be inserted. The first expression must be 2 char-
acter or a predefined keying combination other than one
defined by 2 user-code section. This character is
repeated sufficient times to fill the fill-point. It may be
used zero times. The second expression, if it appears,
specifies additional space to be placed before each occu-
rence of the leader character, and is used to space out
the leaders. Any space that is left over after leadering is
placed in front of the leadering string. Using a space
character as a leader has the same effect as a quad-out.

flush-left-with and justify-with allow leadering to be done
at the end of a paragraph without any special codes
being inserted in the text. These statements place a
quad-with in front of each explicit finish-line or other
condition which causes a line termination to occur
except for text overflowing a line. The flush-left-with
causes all other lines to be set flush-left. The justify-with
statement causes all other lines to be justified.

A particularly useful place for these last two statements
is in a tzbular format, where one or more columns can
be leader-filled. To aid in the convenient setting of
tables, blank tabular columns of text that are under the
control of one of these two statements will be filled with
leaders in the described manner, but only if some previ-
ous column of the tabular chunk has some text in it. This
means that the user can leader-across blank entries of a
table and yet have leading biank entries in a line left
blank.

This, right here

And this is an example of quad-with *.<’, 1 thin at the
end of a paragraph (which is the same as using
justify-with at the start of the paragraph)

is an example of quad-out.

7.4 Explicit Line Breaking Control

These statements allow explicit control of where breaks
can be made in set text lines. They do not force line
breaking but control the determination of where a break
is made when line width overflow requires it.

<line format statement> —
break |
no-break |
break-here |
discretionary <expression>

no-break specifies that the following text is not to be
broken at zny place except where the text overfills the
line width. This allows phrases with spacebands and
hyphens in them to be kept on 2 single line. Normal
determination of valid breaks is resumed by break,
which is, of course, the default condition. The basic
meaning of no-break is “don’t break at all”, but to make
it more useful HUGO will not overfill the line width.

21

The user can prodece lines of arbitrary size by use of the

width statement, and force extra text into a line by use
of the sb-ratio and setwidth statements.

break-here indicates a valid break in a line. It can be
used to allow the HUGO system to place breaks where
its normai rules would not allow.

discretionary indicates a valid place for line breaking in
the same manner as break-here. In addition, it provides
a character to be placed at the end of the line should this
place be used as & break. 1t is normally used to explicitly
indicate valid hyphenation points in words.

Example using discretionary:

Set <HU»
Discretionary ‘-
Set «GO»

/ will cause the set word HUGO to
/ be hyphenated as HU-GC if so

/ needed to break a line.

7.5 Hyphenation

Hyphenation provides an aestheticly pleasing method of
breaking text lines. Considerable control can be main-
tained over hyphenation.

<line format statement> —>
hyph |
nohyph |
english |
french |
hyph-margins <expression>

[, <expression>] |

ladder <expression> |
hyphen <expression> |
hyph-fill <expression> |
min-word <expression> |
stick-hyphens |
no-stick-hyphens

{a) hyph: enables hyphenation,

{b) nohyph: disables hyphenation,

{c) english: enables hyphenation, and selects the eng-
lish hyphenation algorithm,

(d) french: enables hyphenation, and selects the
french hyphenation algorithm,

{e) hyph-margins: specifies the minimum number of
Jetters to be left at the left and right-hand ends of
a word, respectively, when it is hyphenated,

(f) ladder: specifies the maximum number of succes-
sive lines that can be hyphenated,

(g) hyphen: specifies the character to be used as the
hyphen,

(h) hyph-fill: specifies a fraction, in the range from
zero to one, and indicates that lines which can be
filled to that proportion of their line width with-
out hyphenating the last word are not to have
their last word hyphenated,

(i) min-word: specifies that words shorter than the
length given in the expression are not to be sub-
ject to hyphenation,

() stick-hyphens: specifies that hyphenated words
cannot be split across two page columns or two
pages, and

(k) no-stick-hyphens: specifies that the line contatin-
ing the first part of a hyphenated word can be left
at the bottom of a column.

7 Lines

7.6 Identation

The left and right text margins can be adjusted by the
use of quad spaces and by changing the line width. Fur-
ther, and more automatic control is provided by the
indentation statements.

<line format statement> —>
left-indent <indentation margins> |
right-indent <indentation margins>

<indentation margins> —
<expression> [for <expression> 1
[, <expression>] |
<expression> for-all

The lefi-indent and right-indent statements reduce the
line width by the amounts specified in the indentation
margins on the left-and right-hand sides respectively.

The first expression in the indentation margins specifies
the indentation for the first line of a sub-paragraph. If
the for option is specified then the expression following it
indicates for how many lines this indentation is to be
used. If the for-ail option is specified then this indenta-
tion it to be used for all the lines of the sub-paragraph.
In the absence of either option it is used for only one
line.

The expression following the comma, if present, specifies
the amount of indentation for those lines of the sub-
paragraph for which the first indent is not used. If it is
absent, these lines have an indentation of zero.

As an example this paragraph is indented to
the left and right with the following
commands:
Left-indent 2 picas for-all
Right-indent 2 picas, 3 picas

7.7 Line Enquiries

<built-in function call> —
hyphen |
hyph-fill |
left-for |

22

left-indent { <expression>) |
right-indent (<expression>) |
sb-ratio |

sb-step |

width

<Boolean built-in function call> —
break |
engiish |
french |
hyph

(a) hyphen: Returns the current hyphen character.

(b) hyph-fill: Returns the argument of the currently
effective hyph-fill statement (as a fraction of 1).

(c) left-for: Returns the argument of the for option of
the currently effective left-indent.

(d) left-indent: Returns, in points, the left indentation
to be applied to the line indicated by its argument
of a sub-paragraph.

(e) right-for: Returns the argument of the for option
of the currently effective right-indent.

(f) -right-indent: Returns in points, the right indenta-
tion to be applied to the line indicated by its
argument of a sub-paragraph.

(g) sb-ratio: Returns the current sb-ratio statement
argument.

(h) sb-step: Returns the current sb-step statement
argument.

(i) width: Returns the currently specified line width.

(j) break: Succeeds if the break statement is cur-
rently in effect.

(k) english: Succeeds if English hyphenation is cur-
rently in effect.

() french: Succeeds if French hyphenation is cur-
rently in effect.

(m) hyph: Succeeds if either form of hyphenation is
currently in effect.

23

8 Paragraphs

In the same way that characters are formed into words,
which are then used to fill lines, so lines are formed into
paragraphs, which are then used to fill columns on 2
page. Control can be maintained over whether or not
paragraphs are broken across column or page bound-
aries. Paragraph-starts also reset various conditions and
affect the way in which space is placed between lines.

Each type of paragraph is started by a paragraph-start
statement. The leave option (section 8.1.1) on a para-
graph-start statement controls whether or not the char-
acter and line make-up attributes are to be reset to their
defauit values. The chunk, division and sub-para state-
ments control how paragraphs are to be sub-divided.

Paragraph-start statements may appear anywhere in the
HUGO program, but they are designed to be used in the
page body.

Each type of paragraph has restrictions as to whether or
not it may appear at the top or bottom of a page column.
The HUGO system will place text in the page body so as
to satisfy these restrictions. Even paragraph types such
as continued-head and reference-head paragraphs,
which are not set in the page body at the place in which
they first appear must satisfy these restrictions. In these
cases the restriction is satisfied by HUGO moving the
first appearance of these paragraphs to the same column
as the text which immediately follows them.

8.1 Character, Line and Paragraph Makeup Attributes

The statements which establish character, line and para-
graph attributes, which can be saved away and restored
at any time, are:

baseline justify-with
bedford ladder

block leading

bold left-indent
bottom-align medium
bottom-previous min-para

break min-word
centre modern
centre-align no-break
drop-align no-escape-char
english nohyph
escape-char no-para-space
excelsior normal-case
flush-left no-shift
flush-left-with no-stick-hyphens
flush-right no-suffix-space
font old-helvetica
force-justify on

french para-space
fudge perma
helvetica right-indent
hyph roman

hyphen sb-ratio
hyph-fill sb-step
hyph-margins setsize

italic shift-down
justify shift-up
justify-centre slant

justify-right smali-caps

stick-hyphens top-previous
suffix-space unbiock

times widow

top-align width :
8.1.1 Defauit Attributes

At the end of executing the initiaily sections the HUGO
system saves away the character and line makeup attrib-
utes. Uniess the leave option is coded on a paragraph-
start statement those defaults will be restored at the
beginning of all paragraphs. This allows the user to
specify the default attributes for 2 job and means that
for each paragraph only the way in which it differs from
the defaults needs to be specified. These defauits are also
restored at the start of each layout section and at the
start of the finally sections.

In the absence of any specification in the HUGO pro-
gram, the system provides defaults which are listed in
Appendix B.

8.1.2 Saving and Restoring Attributes

When two or more very different sets of attributes apply
to different paragraphs, or when a temporary change in
attributes needs to be made and then canceled, it may be
desirable to save away and restore sets of attributes.

<paragraph format statement> —
save <attribute set name>
restore <attribute set name> |
save-defauits |
restore-defaults

<attribute set name> —» <identifier>

The save statement saves the currently active set of
character and line attributes under the given name. The
restore statement resets all the character and line attrib-
utes to those at the time of the last save with the same
name.

The save-defaults statement replaces the attributes
stored at the end of the initially sections with the current
set of attributes. So the defaults restored at the start of
each paragraph, for example, will be changed. The
restore-defauits restores the default attributes in the
same manner as a paragraph start.

Separate copies of the default attributes are kept for the
layout sections and for the page body. In multi-stream
makeup, a separate copy is kept for each column. So by
using the save-defaults statement a separate set of
attributes can be set up for each column.

The scope of an attribute set name is the whole HUGO
program.
Example of saving and restoring the environment:

save my-environment
times 8pt

set ‘mow in times’
restore my-environment

8.2 Paragraph Organization

The type of a paragraph determines where it will be set.
1t does not, however, determine the internal organization

8 Paragraphs

of the paragraph: how it may be broken across column
or page boundaries, and whether it is to be set in a tabu-
iar format.

If a paragraph is divided into sub-paragraphs, as
described later in this chapter, then the character and
line attributes are saved away at the first sub-para,
chunk or division statement. These attributes are then
restored at the start of each following sub-paragraph
within the paragraph. So, default attributes that apply
only within one paragraph or table can be specified just
once in much the same way that the initiaily sections
establish defzults for the job.

8.2.1 Sub-Paragraphs

The most important use of sub-paragraphs is in the
breaking of a paragraph into the entries of 2 table or
division list, whose features are described later in this
chapter. Another use is the manipulation of character
and line makeup attributes and of line indentation.

<paragraph format statement> —
sub-para [leave]

A sub-para statement describes the simplest form of
sub-paragraph. Like a paragraph start statement, it
starts a new line of text and resets indentation. The other
two types of sub-paragraphs are started by the chunk
statement for table entries and division for parts of divi-
sion lists.

If the leave option is present, the attributes are retained
from the previous sub-paragraph. Otherwise the attrib-
utes specified for the paragraph are restored. As
described above, the paragraph attributes are saved
away at the first sub-para, chunk or division statement
encountered in 2 paragraph. They may or may not be
the same as the default attributes saved at the end of the
initially section or by the save-defaults statement.

The main use of a sub-para is for indenting parts of a
text paragraph. All types of sub-paragraphs may be
mixed in any combination within a paragraph. A useful,
specialized, use of this feature is the ability to set tables,
complete with headings and explanatory material, within
footnotes.

8.2.2 Paragraph Breaking

It may be required that any given paragraph be kept
together within a page column or 2 paragraph may be
allowed to be split amongst two or more columns. If a
paragraph is split it may be required that a certain mini-
mum number of text lines be kept together at the start
and end of the paragraph.

<paragraph format statement> —
block |
unbiock |
min-para <expression> |
widow <expression> [, <expression>]

<Boolean built-in function call> — biock

bilock specifies that a paragraph may not be split; and
unblock specifies that a paragraph may be split. These
attributes may be applied to individual sub-paras as well
as to paragraphs.

The block function returns success if the corresponding
attribute is currently in effect.

24

If the block attribute is not in effect, then the argument
of the effective min-para statement determines the mini-
mum number of text lines that have to be in a paragraph
before it can be split. In addition, the two arguments of
the widow statement determine the minimum number of
text lines that must be kept together at the start and end,
respectively, of a paragraph. If the widow statement has
only one argument, then it is used for both values.

Hyphenation can also control paragraph splitting, as
described later in this chapter.

8.2.3 Interline Spacing

The space between lines can be varied based on the set-
size or the type of paragraph.

<paragraph format statement> —

on <expression> [, <expression>] |
leading <expression>

[, <expression>] |
para-space <expression>

[, <expression>] |
suffix-space <expression>

[, <expression>] |
no-para-space |
no-suffix-space |
space-block <expression>

The on statement is used in conjunction with a character
format statement that changes the setsize. When used, it
immediately follows the setsize statement. The first
expression specifies the distance by which the zero base-
lines of text lines are to be separated. Issuing 2 new set-
size statement does not affect this leading unless it is
also followed by an on statement. The second expression
specifies the proportion by which the interline spacing
can be increased to achieve vertical justification of
columns. The number for each line is used in proportion
to the sum of all the proportions of all the lines in the
column. The value used for a normal text line, if not
specified in the on statement, is one one-thousandth the
value given in the first argument expressed in points.
This means that little or no extra space can be put
between normal text lines unless there is no other place
to put the space.

The leading statement allows the on statement to be
overriden for just one line. The default value for the
second argument is the value given for the first argu-
ment. This statement is especially useful for controling
the vertical space between sub-paragraphs or chunks
within a paragraph.

The para-space statement specifies the space to be put
before the first line of a paragraph. The distance
between the zero baseline of the last line of a paragraph
and that of the first line of the next is the value in the
first expression of the para-space statement plus the set
height of the first line of the new paragraph. The second
expression specifies the proportion this space can be
increased by and if not present, defaults to the value
given in the first argument.

- The suffix-space statement is similar to the para-space

statement except that it overrides the para-space values
for the next paragraph and so specifies the space to be
placed following the current paragraph. It is useful for
head paragraphs and is almost always used with

8 Paragraphs

carried-head and continued-head paragraphs, in which
case the suffix-space values get carried along with the
head.

In the absence of effective para-space and suffix-space
statements, the space preceding the first line of a para-
graph is determined by any currently effective on state-
ment. The no-para-space and no-suffix-space state-
ment cancel the effect of any current para-space
statement respectively.

The space-block creates a vertical space of the size
specified by its argument. Its primary use is for reserving
space in text columns for illustrations and for vertically
positioning headings on title pages.

Interline spacing is never used preceding the first, or fol-
lowing the last line of a column.

8.2.4 Paragraph Enquiries

<built-in function call> —
para-space |
suffix-space

The para-space and suffix-space functions return the
amount of space, in points, applicable to the attributes
they name. If no-para-space is currently in effect, then
para-space returns the space normally placed between
two successive text lines, that is, the difference between
the current set height and the current leading specified
by the on statement. If no-suffix-space is currently in
effect, then zero is returned by suffix-space. Note that
these values are not necessarily those used on the current
paragraph, as other factors also determine the space
around lines placed in the page body.

8.3 Types of Paragraphs

It may be required that any given paragraph be kept
together within a page column or 2 paragraph may be
allowed to be split amongst two or more columns. If a
paragraph is split it may be required that a certain mini-
mum number of text lines be kept together at the start
and end of the paragraph.

8.3.1 Text Paragraphs

<paragraph start statement> —
head [leave] |
tag [leave] |
inter-para [leave] |
cut-line [leave] |
text [leave] |
display-head [leave]

The types of paragraphs listed above differ in the way in
which they can be placed within a column of text. The
rules are:

(a) head: the paragraph may not appear at the bot-
tom of a column;

(b) tag: the paragraph may not appear at the top of a
column;

(c) inter-para: the paragraph may not appear at
either the top or bottom of a column;

{(d) cut-line: the paragraph may not be broken, and if
it appears at the top or the bottom of a column it
is deleted from the output text;

(e) text: the paragraph is free to appear anywhere in
a column.

25

(f) dispiay-head: the paragraph will be placed at the
top of the next column, before the carried heads,
if it does not fit completely in the current text
column. If the paragraph is moved, the text of the
next paragraph following it will still be fit into
the current column, so this type of paragraph is
useful for correctly positioning certain types of
illustrations and tables.

8.3.2 Carried Heads

Carried heads aliow for the setting of running heads in
the page body.

<paragraph start statement> —>
carried-head <carried head name>
[leave] |
continued-head <carried head name>
[leave]

<paragraph format statement> —
kill-nead <carried head name> |
kill-all-heads

<carried head name> — <identifier>

carried-head paragraphs cannot be broken across
column or page boundaries nor may they appear at the
bottom of a column. A carried-head paragraph appears
at the top of every column after its definition until it is
replaced by another carried head with the same carried
head name, until it is deleted by a kill-head statement
using the same carried head name, or until a
kill-all-heads statement does gust that. More than one
carried-head paragraph may ¢ carried from column to
column so long as they have different carried head
names.

continued-head paragraphs are carried heads and are
identical to carried-head paragraphs except that they
are not set at the point in the text where they first
appear. They are set at the top of every column thereaf-
ter until deleted or replaced in the same manner as a
carried-head paragraph.

The kill-head statement deletes any carried head which
is currently being carried with its carried head name. It
will also delete any carried heads defined since the car-
ried head of its own name. If there is no carried head
with the kil-head statement’s carried head name then
the statement has no effect.

The Kill-ali-heads statement deletes all carried heads not
yet otherwise deleted. Both the kill-head and
Kill-all-heads statements should be placed at the end of a
paragraph.

Examples of paragraph start statements:

carried-head main
carried-head sub
continued-head sub2

8.3.3 Reference Heads

Reference heads are running heads set outside the page
body which can be used to implement such features as
dictionary headings, subject titles and other updated
indications of the contents of the page.

<paragraph start statement> —
reference-head <reference head name>
[leave]

8 Paragraphs

<page format statement> —
use-first <reference head name> |
use-last <reference head name>

<reference head name> — <identifier>

reference-head paragraphs are not set in the page body.
They are set in the layout when explicitly cailed for by a
use-first or use-last statement. The at statement
described in section 9.1.2 is used to position- reference
heads in the layout.

The use-first statement selects the first reference head
with the specified reference head name from the preced-
ing page body and sets it in the layout. The use-last
statement selects the last such and sets it. If only one
reference head appears in a page body with a given ref-
srence head name then it will be subsequently set by
both the use-first and use-last statements. If no refer-
ence head with a given head name appears in a page
body then the last reference head that was defined previ-
ous to that page body is used by the use-first and
use-last statements. If no reference head with a given
name appears in a job prior to a use-first or use-last
statement using that name then no text is set.

If a use-first or use-last statement is used in a page lay-
out before the body of the page is set then the reference
heads will come from the previous page. If a use-first or
use-last statement is used after the body then the refer-
ence heads will come from that body.

Example of defining and using a reference head:

reference-head top
set ‘Head’ / in an ”if-you-find”
at 0,10 inches .
use-first top / in the “layout”

8.4 Tables

Tabular formatting is of two general types: that which
places tables within the columns of a page, and that
which lays out the whole of the page body in 2 table-like
format. The former is discussed in this section. The lat-
ter is discussed under the heading of multi-stream
makeup.

8.4.1 Table Definition

The table definition statement provides HUGO with a
specification of tabular format to be used when next 2
chunk statement is encountered.

<table definition statement> —
table { <statement> }
{ tcol <table column setup> }
end-tabie

<table column setup> —
<expression> [, <expression>]
{ <statement> }

The table column setups in the table definition statement
specify, for each column in the table, the special attrib-
utes of that column. The first expression specifies the
position of the tabular column with respect to the left
edge of the page column within which the tabular entry
resides. The positions of the tabular columns need not be
in any particular order. The second expression, if
present, specifies the width of the lines in the entry. The
statements in a table column setup are used to specify

line justification methods, indentation and vertical align-
ment of the entry.

Tabular formats can be provided to HUGO from within
any section of 2 program, and then used after the section
has been exited. Any use within a table column setup of
a non-static local variabie or parameter whose scope has
been exited and cannot be restored by a return from a
function, user-defined statement or user-code is a viola-
tion of that variable’s scope and as such is in error.

8.4.2 Tabular Text

The chunk statement starts 2 new line in a table, which
is called a chunk. It invokes the latest table definition.
The text for the entries within a tabular line are sepa-
rated by tab statements.

When a chunk is started the paragraph attributes are
first restored. The statements preceding the first tcol in
the current table definition are executed, after which the
character and line makeup attributes are saved away to
be restored at the start of each entry in the chunk. This
allows those attributes which all the entries have in com-
mon to be grouped together in the front of the table defi-
nition.

After these chunk attributes have been established, the
table column setup for the first entry is executed when a
chunk statement is used. Then, the HUGO system
returns just following where the chunk statement
appeared so that the text for the first entry can be gath-
ered from the input. Each tab statement returns control
to the next table column setup, which is executed in the
same way as the first. There can be fewer entries in a
chunk than there are table column setups, in which case
the unused ones are just ignored. But there should not be
more.

Each entry starts a new sub-paragraph, and so resets
indentation. The sub-entry starts a sub-paragraph with-
out terminating either an entry or 2 chunk.

<paragraph format statement> —
tab |
chunk [leave] |
sub-entry [leave] |

The tab statement specifies that the next table column is
10 be entered. The contents of each table column setup in
the table definition statements is evaluated each time the
corresponding column is entered, so that the position,
width and other attributes of an entry can be dynami-
caily calculated.

8.4.3 Tabular Entry Alignment

<paragraph format statement> —>
top-align |
bottom-align |
drop-align |
centre-align |
top-previous |
bottom-previous

top-align, bottom-align, drop-align, centre-align,
top-previous and bottom-previous are intended to be
used in a table column setup and specify the method of
vertically aligning the entries in 2 table as follows:

& Paragraphs

(a) top-align: the first line of the entry is aligned at
the top of the longest entry in the current chunk,

(b) bottom-align: the last line of the entry is aligned
at the bottom of the longest entry in the current
chunk,

{c) drop-align: the baseline of the first line in the
entry is lined up with the zero baseline of the last
line in the previous entry,

(d) centre-align: the entry is verticaily centred on the
longest entry in the current chunk,

(e) top-previous: the first line of the entry is aligned
at the top of the previous entry in the current
chunk,

{f) bottom-previous: the last line of the entry is
aligned at the bottom of the previous entry in the
current chunk.

top-align is assumed if no other alignment is specified.

The tabular format defined in the sample program in
Appendix E is used in this report in Chapter 9.5.3and in
Appendix B.2 and B.3. The following example illustrates
the establishment of bottom-align as the default for this
" sort of table, the overriding of that default, and the use
of a variety of typestyles within a table.

table
bottom-align
tcol lcm, 3cm
top-align
flush-right
tcol 4.5cm
flush-left-with *.’, 1 thin
tcol 8cm, 2cm
flush-left
setsize .7 emon 1.1 ex
end-table

8.4.4 Tabular Enquiries

<built-in function call> —
max-column |
tabular-column |
tabular-position

These functions can only be used while a table is being
set. max-column returns the number of table column
setups in the currently effective table definition.
tabular-coiumn returns the number of the current entry,
counting the first entry in a chunk as 1. tabular-position
returns the position specified in the table column setup
for the current entry. s

The tabular-column function only reflects the tabular
makeup actions that have actuaily been performed. If a
“tab™ character has already been encountersd in the
input stream it will not be reflected in the tabular-count
until that character has been interpreted as the “tab-
bing” action by the tabular composition facilities.
Depending on how the text editing facilities of the lan-
guage are implemented (Chapterl1), this may not get
done until an if-you-find or line end is actioned from the
input. On the other hand this is of no concern unless the
tabular-column function is used in a pattern expression
to control whether or not an if-you-find is to be selected
for use. If this is the case for any particualar HUGO

27

program, then to ensure that all “tabs” are actioned
when they are encountered the following section should
be placed at the end of the user’s program:

if-you find tab tab =
/ i.e. if you find a tab, do a tab

8.5 Footnotes

Footnotes can be set in either the single- or multi-stream
forms of page makeup described in chapter 9. A footnote
is a line or paragraph placed at the bottom of a text
column. A line which contains a reference to the foot-
note must also be present. HUGO ensures that the foot-
note and its reference appear in the same column.

HUGO does not automatically number or mark with
asterisks or daggers either footnotes or their references.
This can, however, be easily done by the user with the
other facilities that HUGO provides and in the manner
that the user desires. For example the asterisk® in this
sentence was input at the same point as the reference to
the footnote below.

8.5.1 Defining Footnotes

<paragraph start statement> —
footnote [leave | |
foot-head [leave]

<paragraph format statement> —
foot-ref |
no-foot-head

A footnote paragraph can be placed before or after the
paragraph which contains the reference to it. The
foot-ref statement is placed on the line which is to deter-
mine the column in which its footnote is to be included.
No identification is used to link footnotes and their ref-
erences, the first footnote in a job is associated to the
first reference, and so on with the second and later pairs.
If the reference to a footnote appears within the footnote
paragraph itself, the footnote is associated with the first
line of the next following text paragraph.

A footnote head is a line or paragraph used to separate
the text of a column from its footnotes. Only one foot-
note head is used for each column. The one used is the
last foot-head paragraph which precedes the first foot-
note set in the column. If no footnotes are set in a
column then no footnote head will be set in that column.
If the no-foot-head statement preceeds any given foot-
note, then if that footnote is the first in its column, then
no footnote head wiil be used.

8.5.2 Positioning Footnotes

Normally footnotes appear at the bottom of the column
in which they are referenced. No attempt is made to bal-
ance the number of footnotes in each column, and in
page bodies which are terminated without being filled
with text, footnotes are set within the shorter body.
Some control is available over this normal situation.

*Just an example of 2 footnote.

8 Paragraphs

<page format statement> —
foot-baiance |
foct-bottom |
foot-lineup |
no-foot-baiance |
no-foct-bottom |
no-foot-lineup

foot-balance only has effect in multi-stream makeup. It
causes HUGO to attempt to inciude the same number of
footnote references in each column following the last
lineup point in the text. It will therefore cause matching
footnotes to appear in the same page body.

foot-bottom causes footnotes to always appear pushed to
the bottom of the full body depth specified in the defin-
ing body statement. This may mean that extra space has
to be placed before the first footnote or the footnote
headings.

foot-lineup only has effect in multi-stream makeup. It
specifies that the top of the first footnote in each column
or of the footnote heading, if one is present, is to be at
the same vertical position.

no-foot-balance, no-foot-bottom and no-foot-lineup
specify that the corresponding control is to be disabled,
and the normal situation restored.

8.6 Sidenotes

Sidenotes are entered and referenced like footnotes.
Rather than the sidenotes themselves being set within
the text columns, they are set in their own columns and
vertically aligned with the lines which reference them.

<paragraph start statement> —
sidenote [leave]

<paragraph format statement> — side-ref

<page format statement> —
overfill <expression>

A sidenote paragraph can be placed before or after the
paragraph which contains the reference to it. The
side-ref statement is used to indicate the place where a
sidenote is referenced, and functions the same way as the
foot-ref statement.

The top of the setheight of the first line of a sidenote is
aligned with top of the setheight of the line referencing
it. If this would cause it to overlap other sidenotes, it is
placed immediately below these other sidenotes.

Adjustments can be made to the exact vertical position
of sidenotes with the baseline statement.

The position of the column in which sidenotes are set is
determined by the columns or multi-columns statement
controlling page makeup, as described in chapter 9.

Normally, if 2 sidenote does not fit within the current
body depth, then it and its reference wiil be pushed to
the next column or page. The overfill statement specifies
that a sidenote may extend below the body depth with-
out being pushed to the next column. Its argument is a

28

number specifying the maximum amount by which any
sidenote can so overhang before the normal mechanism
is invoked.

8.7 Explanatory Notes

Explanatory notes are like footnotes and sidenotes in
that they are referenced from, and related to matter in
normal text paragraphs, but they differ in that they are
not set in the same page body as the text which refer-
ences them. They can be set within the same page layout
as their references, but are usually set on a facing page,
and to aid in this, special line-up facilities are provided.
The statements below are used to define and reference
explanatory note paragraphs. The statements used to
define where these paragraphs are set in the page layout
are described in Chapter 9.2.5.

<paragraph start statement> —
ex-note [leave] |
ex-note-head [leave]

<paragraph format statement> —
ex-note-ref |
no-ex-note-ref

As with footnotes and sidenotes, an explanatory note ref-
erence within the referenced paragraph is considered by
the system to be on the first line of the next normal text
paragraph.

The system will attempt to set an explanatory note in the
first ex-note-body (see Chapter 9.2.5) following the
body in which it is referenced. If there is too much
explanatory note text for an ex-note-body then the cur-
rent ex-note-head paragraph, if any, will be used as a
continuation head at the top of the next ex-note-body
into which the note will be carried. ex-note-heads are
only ever set as continuation heads. no-ex-note-head
says there is no such head.

8.8 Division Lists

A division list is a form of table in which the entries run
down the page column instead of across the column.

<paragraph format statement> —
division <expression> {, <expression> }

The division statement, like the chunk statement, starts
a group of sub-paragraphs. The division list, like a chunk
of a table, should be embedded within a paragraph. The
number of expressions determines in how many sub-
columns the entries are to be placed. The expressions
specify the horizontal position of each sub-column. The
entries in a division list are divided amongst the sub-
columns as evenly as possible.

The entries of a division list, like those of a table, are
separated by the tab statement.

Division lists can be used to pack lists of short items into
a text column as in the list of makeup attributes in
Chapter 8.1.

29

9 Pages

Text may be typeset during the execution of the initially
and finally sections of the HUGO program. This text is
placed in the output line by line with no page structur-
ing. All other text is set within the confines of the pages
in the job. The main function of the page formatting
facilities is to position text within pages.

9.1 Page Layouts

A page layout has a width and 2 height. The page head-
ings and body are positioned within the layout by the
HUGO program. These items must be positioned so as
to allow for the proper left, right, top and bottom mar-
gins on the page.

Positions within the layout are expressed as pairs of dis-
tances from the left and top edges of the page layout.

More than one page layout may be used in a job. Differ-
ent chapters may be formatted differently. Different lay-
outs may be required for the first page of a job and for
even and odd numbered pages.

Refer to the sample program in Appendix E for the page
layout used to define the format of the pages in this
report.

9.1.1 The Page Dimensions

<layout section> —>
layout <layout name> <layout shape>
{ <local declaration group> }
{ <statement> }

<layout name> — <identifier>

<layout shape> —
<expression> , <expression> |
<expression> [portrait | landscape]

A layout section describes a page format. The layout
name is used by a first-layout or next-layout statement
to specify the sequence of page formats. The statements
contained in the layout section specify the various head-
ings, and the location and depth of the body of the page.

The layout shape specifies the shape and size of the
page. If two expressions are given, then they are taken to
be the page width and height respectively. If only one
expression is given together with the portrait option then
that value is taken to be the page width and the HUGO
system calculates an appropriately proportioned depth in
such a way that the page depth is the long dimension. if
the jandscape option is specified then the given value is
the depth and the HUGO system calculates and appro-
priately proportioned width so that the page width is the
long dimension. If neither portrait or landscape is speci-
fied then portrait is assumed.

The “appropriately proportioned” dimensions calculated
for the portrait and landscape forms of the layout shape
produce a page such that if the page is cut in half paral-
lel to its short dimension then the result will be two
pages exactly half the area of the original and of exactly
the same shape. This is the rule used to produce the met-
ric standard page sizes described in section 9.5.3.

9.1.2 Positioning Text in a Page

<page format statement> —
at <expression> , <expression>

At any given stage of the processing of a page layout,
the HUGO system is at some unique position within that
layout. That position is where the next item of text in the
page will be set. The at statement allows the user to
specify the position of the next item of text. The two
expressions specify the distance from the lefthand edge
and the top edge, respectively, of the page layout.

If the next line of text is a heading then the position
specified in the at statement will be the lower lefthand
corner of the text line, that is at the left end of the line’s
baseline. If further heading lines are set without inter-
vening at statements, then they will be placed at the
same horizontal position as the first but advanced by the
amount given in the applicable on, para-space or
suffix-space statement.

If the next text set after the at statement is the page
body then the at statement specifies the location of the
top lefthand corner of the body. If the first line after the
page body is set without an intervening at statement, it
will be advanced from the actual depth at which the
body was set rather than that specified in the body
statement. This allows page headings to be set tight
against the page body, if required.

The elements of a page layout may be set in any order
that satisfies the requirements of an individuai job. The
page headings, body and footings do not have to be set in
that order. If a subject title is to depend on the contents
of the current page it must be set after the page body
even though it is positioned above the page body. Like-
wise subject information from the previous page must be
set before the page body is set.

9.1.3 Sequence of Pages

<first-layout section> —>
first-layout <layout name>

<page format statement> —
next-laycut <layout name>

The first-layout program section specifies the first page
layout to be used in a job. It must be used in a job or no
pages will be set.

The next-layout statement specifies the page layout to
be used after the current page has been compieted. If no
next-layout statement appears in a layout section then
the current page layout will be reused.

9.2 The Page Body

The text for page headings is generally specified in a
HUGO program. The text for the page body and for ref-
erence headings comes from a separate file called the
text file. The data in this file is processed by the if-you-
find sections of the HUGO program and then made
available for inclusion in the page body. When the
HUGO system encounters 2 Dody statement, it collects
as many lines as will fit into that page body, sets them

9 Pages

under the control of the various body formatting state-
ments supplied to the system by the HUGO program,
and then continues to execute the page layout.

A page body is divided into columns. There are many -

ways in which a body may be divided into columns, and
though it is not usually done, part of a body may be set
with one type of division and another part may be set
with a different type. The top half of 2 body may be set
with two columns, for example, and the bottom half with
three columns. If the body format is changed part way
through a page body then the text previous to the change
is set over as short a depth as possible, and the remaining
body depth is used to set the new format.

9.2.1 Entering and Leaving the Page Body

<page format statement> —
body <expression> |
finish-body [long 1 |
finish { tong 1 |
new-bedy [long] |
sub-body |
normaiize-page |
finish-column |
reserve <expression>

The body statement is used in a layout section to indi-
cate the location and depth of a page body. An at state-
ment is used to position the page body. The expression in
the body statement gives the depth. The width of the
body is determined by the type of coiumn makeup used
and by the width of the lines set in the body. More than
one body may be set within a layout section.

The finish-body statement indicates that the text in the
page body is to be set over as short a depth as possible,
that execution of the page body is to be terminated, and
that execution of the page layout is to resume immedi-
ately following the body statement. The new-body
statement does exactly the same thing except that if the
current page body does not contain any text, execution
of the page body will not be terminated. A finish-body
or new-body statement should appear in an if-you-find
section or an at-end section.

The finish statement forces the end of the text input file.
It terminates a page body in the same manner as 2
finish-body statement and specifies that no layout sec-
tions are to be executed after the current one. After the
current layout section is compieted, the finally sections
will be executed, then the job is terminated.

The long option following either the finish-body,
new-body or finish statement specifies that instead of
the remaining text being set over as short 2 depth as pos-
sible, the text is to be set over the full remaining body
depth, as if it were and intermediate page in a chapter.

The sub-body statement does the same thing as the
new-body statement as far as setting the text in the page
body over as short 2 depth as possible, but it leaves con-
trol in the current body if possible.

The normalize-page statement indicates to HUGQO that
an acceptable location at which to break a text column
has been reached. HUGO will then {lush as much text as
possible into the current page body, and therefore ailow
the user to reliably enquire as to the appropriate value of

30

the page-count function. This method of synchroniza-
tion should only be used when this infomation is needed
to determine whether a page break is to be called for by
the user, as when the text in two separate documents is
being matched up.

The finish-column statement specifies that the current
column of text is to be immediately terminated,
independantly of the decisions of the body-filling
algorithms.

The reserve statement specifies that if the space given
by its numeric argument is not available in the current
column, then it is to be terminated immediately and a
new text column started. It can be used to keep a mea-
sured amount of text following it together on the same

page.

9.2.2 Columa Justification

Normally 2 columns, multi-columns, finish-body or fin-
ish statement causes the existing body text to be set over
the shortest possible depth before continuing its own
action. They also cause the set text to be justified verti-
cally over the depth, as does leaving a page body when it
has been overfilled with text. These actions can be pre-
vented from happening with the following commands.

<page format statement> —
top-flush |
justify-vertically |
evenup |
no-evenup |
evenup-step <expression> |
maximum-expansion <expression> |
no-maximum-expansion

top-flush prevents vertical justification of columns.
justify-vertically causes it to resume, and is the default.

evenup causes text to be set over the shortest possible
depth whenever a columns, finish-body or finish state-
ment is executed. No-evenup causes text to be set over
the full remaining body depth and suppresses balancing
the text in the columns of single stream makeup. The
argument of the evenup-step statement specifies the
accuracy to which column balancing is to be attempted.

The argument of maximum-expansion indicates the
maximum amount of extra space that can ever be placed
beween two lines to achieve vertical justification. This
will prevent large “gaps” being left in extreme cases, but
may have the offsetting disadvantage of prventing a
column of text from being fully justified.
no-maximum-expansion indicates there is no maximuim
limit on vertical justification.

9.2.3 Space in the Page Body

<page format statement> —
body-space <expression> [, <expression> |

The first expression in the body-space statement speci-
fies the amount of vertical space to be placed in the page
body whenever a sub-body, columns or multi-columns
statement is executed. This space separates blocks of
text set using different body formats within the same
body.

The second expression, if present, indicates the amount
of vertical space that should remain in the body after the

9 Pages

body space has been taken from it. If it does not, then
the body is to be terminated, and the layout reentered.

2.4 Galley-Form Page Bodies

Sometimes the power of the page body formatting facili-
ties are not required, and only a simple method of filling
a page body is required.

<page format statement> —
galley <expression>

The galley statement performs the function of the body
statement except that no distinction is made when plac-
ing lines in the body as to the paragraph type of those
lines, none of the page format controls have any effect,
and no vertical justification is performed. This form of
page body can be used to set simple page formats, or for
the setting of “proof™ copy text, where the traditional
“galley-form” of setting text can be emuiated.

When in a galley-form page body, none of the state-
ments in Chapter 9 have any effect except those in sec-
tion 9.1, finish-body and finish. The long option of these
last two statements also has no effect.

9.2.5 Explanatery Note Bodies

Explanatory notes (see Chapter 8.7) become *‘active”
when the text which references them has been set in 2
page body. Any active explanatory notes can be set by
use of an explanatory note body.

<page format statement> —
ex-note-body <expression> |
ex-note-columns <expression>
{ , <expression> } |
ex-note-lineup |
no-ex-note-lineup

<Boolean built-in function> —
any-ex-notes

An ex-note-body can be used anywhere in a page lay-
out. HUGO attempts to set all the active explanatory
notes in the ex-note-body. If there is too much text for
the body, the overflow will be kept for the next
ex-note-body. An ex-note-body can be placed in the
same page layout as a body, in a separate layout
intended to be printed as a “facing” page to the refe-
rencing text, or ail explanatory notes can be gathered
together at the end of a chapter or a job. The
ex-note-columns statement defines the horizontal dis-
placement of the columns of text in an ex-note-body.
For single-stream makeup there can only be one such
column, and in multi-stream makeup there must be a
column for each column in the body from which refer-
ences are made to explanatory notes.

If ex-note-lineup is specified then an attempt is made to
vertically align the first line of an explanatory note with
the line on which it is referenced, even though the two
lines may be in different page layouts. If there is too
much text in the ex-note-body, if an explanatory note
does not fit in the first ex-note-body into which HUGO
attempts to fit it, or if no-ex-note-iineup is specified
then no such attempt is made. However, explanatory
notes in multi-stream makeup which are lined-up using
the line-up statement will still be vertically aligned with
respect to each other.

31

The any-ex-notes function succeeds if and only if there
are any unset active explanatory notes. It can be used,
together with a conditional statement and a next-layout
statement, to control sequencing between main iext page
layouts and layouts used to set explanatory notes. Using
this function, the user can arrange to set enough pages to
make sure ail explanatory notes are set adjacent to the
page from which they are referenced, or the user can
place explanatory notes wherever there is space availabie
on following “facing” pages. :

9.3 Page Makeup

There are two general types of page body formatting.
Single stream makeup allows a single stream of text
paragraphs to be set in multiple columns so that the last
line in one column is logically followed by the first line
in the next. The chief use of this form of makeup is for
single language publications where the line width needs
to be kept short enough to be read conveniently. Multi-
ple stream makeup ailows the text input to be divided
into segments, and the page column into which each seg-
ment is to be placed to be specified. It can be used for
publications which have an overall tabular composition
such as catalogs, and for side-by-side bilingual publica-
tions, with or without side notes.

9.3.1 Single Stream Makeup

<page format statement> —»
columns <column position>
{, <column position> }

The number of column positions in the columns state-
ment specifies how many columns are to be set in single
stream makeup column format. The value of each
column position specifies the horizontal position of the
corresponding column with respect to the left hand mar-
gin of the page body (nor the page layout). These posi-
tions need not be in ascending order.

When, as usually is the case, a new page body is entered
without the specification of a new columns statement,
the last columns statement used in the previous page
remains in effect. A columns statement may also be
placed in an initially section to specify the column for-
mat for the first part of, or for the whole job.

Example of a columns statement:

columns O, 3.5in, 7in / assuming width 3in

9.3.2 Muitiple Stream Makeup

<page format statement> —>
multi-columns <column position>
{, <column position> } |
into-column <expression> |
lineup

The number of column positions in the muiti-columns
statement specifies how many columns are to be set in
multiple stream column format. The value of each
column position specifies the horizontal position of the
corresponding column as in the columns statement.

The into-column statement specifies into which column
text is to be placed until otherwise specified. The column
numbers which can be specified are in the range 1 (one)
to the number of columns in the current multi-columns
format. The into-column statement can only be used in

R RN

9 Pages

multiple stream makeup. The current column should
only ever be changed at a paragraph boundary.

The fineup statement specifies that the text in ail
columas is to be aligned at this point. Enough vertical
space is placed in each column to line up the top of the
next paragraph in each column.

9.3.3 Page Column Positioning

A column position specifies the horizontal location of a
page makeup column of text within the body of the page.
It may in addition indicate the horizontal position of the
column into which sidenote text is to be placed.

<column position> — <expression>
[with <expression>]

The first expression gives the position of the text
columns described for single- and multi-stream makeup.
The second expression, if present, gives the position of
the sidenote coiumn, the filling of which is described in
chapter 8. The sidenote column may be to the left or the
right of the text column, but should not, of course, over-
lap it.

9.4 Page Indexing -

The indexing facilities of HUGO are designed to aid in
the generation of tables of contents, of book indexes, of
special forms of running headings on a page, and gener-
ally, of lists of information about how a publication is
set. To do indexing it is usually necessary to save away
some information about text being set and to retrieve it
at a later time. This can be done using global variables,
lists and the put statement and get built-in function.

If the page on which indexed text appears is not to be
recorded, then the above facilities together with the text
editing facilities of the language are sufficient. However,
as the page on which a line of text will appear is not
completely determined when that text is first set, some
further aid is required to get this information.

<page format statement> —»
index-item <expression>
{ <statement> }
end-index

<built-in function cail> —
index-item |
index-x |
index-y

An index-item statement must be executed while a line
of text is being set in the body of a page. The expression
will be evaiuated at that time and saved away together
with the statements enclosed in the index-item. These
statements are not executed immediately. When a page
body that has index-items within it is completed, and
“locked up” so that the position of all text in it has been
determined, then these statements will be executed.
They are considered to be executed within the layout but
cutside the page body. So the at statement can be used
in the index-item to position text, but no further text can
be set within the page body.

The same index-item statement may be used more than
once in any given page body. Each execution is treated
independently of the others and is expected to be distin-
guished by the value of the expression in the index-item.

32

The built-in functions associated with page indexing can
only be used inside an index-item. They each return
some information about the execution of the index-item
statement with which they are associated:
index-item returns the value of the expression given
when the index-item statement was executed.
index-x returns the distance in points from the left-
hand edge of the page layout to the left-hand end of
the line of text associated with the index-item.
index-y return the distance in points from the top edge
of the page layout to the baseline of the associated
line of text.

9.5 Page Makeup Enquiries

9.5.1 Enquiries About the Page

<built-in function call> —
at-y |
columns |
evenup-step |
layout-depth |
layout-width |
max-depth |
max-width |
muiti-column

(a) at-y can only be used in the layout outside of any
body. It returns the current vertical position as
determined by the at statement, by setting lines
and by page bodies. After a body, this function
returns the vertical position of the last line actu-
ally set in that body.

(b) columns returns the number of columns in the
current page body format.

(c) evenup-step returns the value of the currently
effective evenup-step statement.

(d) layout-depth returns the depth of the current lay-
out.

(e) layout-width returns the width of the current lay-
out.

() max-depth returns the maximum depth that
HUGO allows for a layout. This is also, of
course, the maximum allowed body depth and the
greatest allowed rule height.

(g) max-width returns the maximum width that
HUGO allows for a layout. It is also the max-
imum allowed line width and rule width.

(h) muiti-column returns the number of the current
multi-stream makeup column as determined by
the latest into-column statement. It is only mean-
ingful in muiti-stream makeup.

9.5.2 Areas

Page makeup divides each body within a page into areas.
An area is a column in single- or multi-stream makeup.
If a2 new page format is started part way through a page
body then both the old and new formats are considered
to generate their own areas. A number of built-in func-
tions and an operator have been provided to allow a
HUGQO program to enquire about these areas. They can
only be meaningfully used after a body is set in a layout
but before that layout is completed. They can be used to
number lines of text on a page and to determine where
page-masking rules are to be placed.

9 Pages

<built-in function call> —
area-count |
area-size { <expression>) |
footnote-count (<expression>) |
x-posn { <expression>)

<factor> — <factor> y-posn <subfactor>

area-count returns the number of areas in the previous
body.

area-size returns the number of text lines in the area
whose number is given by its argument. The areas are
numbered starting at | for the first area in a body, and
then in increasing order down and across the body. The
text lines counted are those which are visibie in the given
area. Carried heads are included but footnotes, sidenotes
and reference heads are not.

footnote-count returns footnote heading lines in the area
given by its argument.

x-posn returns the distance in points between the left-
hand edge of the layout and the left-hand edge of the
column which constitutes the area given by the
function’s argument. Note that all lines in any given
area are at the same horizontal position.

y-posn returns the distance in points from the top of the
page layout to the zero baseline of the line given in the
first argument in the area given by the second. Lines in

33

an area are numbered from 1. The footnote head lines
are included in this count. The first footnote line is given
the number returned by the area-size function plus 1.

9.5.3 Standard Page Sizes

A set of built-in functions is provided to support the
standard metric page sizes. These functions return the
short dimension of a page with the corresponding page
size, and can be used with the portrait and iandscape
forms of the layout section to give the proper standard
page dimensions. Note that the a4 size (which is about 8
Y% by 11 % inches) is the metric replacement for the
usual letter page.

<built-in function call> —
a0 | at !a2 | a3 |24 | a5 | a6 | a7 | a8

The results of these functions are approximately:

L0} S SR W 84.1 cmor 33 in.
gl e 58.5cmor 23 % in.
@20y 42.0cmor 16 % in.
35 SO e 29.7cmor 11 % in.
ade 21.0cmor 8 % in.
ASEER 149 cmor 5 % in.
26 FREE e e e e 10.5cmor 4 % in.
o e R o e 7.4 cmor3in.

QSIS TP Rt S R S.2cmor2in.

34

10 Ruling and Underlining

The ruling facilities can be used to draw lines around, .

under, and through text. They can be used in association
with the character, line, paragraph and page makeup
facilities of HUGO, depending on what features are to
be used to control the size, shape and position of the line.

In some types of ruling, such as underlining, the lines are
drawn with only one orientation, in this case, horizontal.
However, with the more general line drawing facilities,
both horizontai and vertical lines can be drawn. In these
cases the HUGO facilities ailow the user to draw a solid
rectangle. This rectangle can be drawn wide and of short
height tc produce a horizontal line, or.it can be drawn
narrow and high to produce a vertical line. The “length”
and “thickness” of a line have to be interpreted accord-
ingly.

10.1 Underlining

Underlining is used in conjunction with character
makeup and can be used to place lines under individual
characters, under words or under phrases. Extensive
underlining can be avoided by the use of side-lining,
which summarizes a group of underlined lines by placing
a vertical line beside these lines.

10.1.1 Basic Underiining

<character format statement> —
underline |
no-underiine |
underiine-specs <expression> , <expression>

underiine turns underlining on and no-underline turns it
off. It can be turned on and off at any point in a line.
Not only text, but quad spaces, spacebands, and leader-
fill can be underlined.

underline-specs specifies the thickness and position of
the line to be used for underlining. The first expression
specifies the distance between the text lines’ zero base-
line and the top edge of the underline. The second speci-
fies its thickness. These values are interpreted in propor-
tion to the current setsize and will be modified by the
system to reflect any change in setsize. They should
therefore be expressed using the ex operator.

As an example, part of this line is underlined just by
using the underline statement to turn it on and the
no-underline sta:ement to turn it off.

10.1.2 Side-lining

<paraZraph format statement> —
side-iine <expression> , <expression>
{ , <expression> , <expression>] |
side-line-vary <expression> , <expression>
{, <expression> , <expression>] |
ne-side-line

The side-line and side-line-vary statements both indicate
that side-lining is to be used and they specify the posi-
tion and width of the side-line. When enabled a sideline
will be drawn beside a text line whose text would other-
wise have been entirely underlined. Successive side-lined

lines will have their side-lines connected to produce a
single line. The four expressions in the side-line and
side-line-vary statement indicate:

- The horizontal distance between the left edge of the
side-line and the left-hand end of the text line. A
negative number places the line to the left of the
text line, and a positive number greater than the
line width places it to the right of the text line.

- The width of the side-line.

- The distance above the zero baseline of a side-lined
text line where the side-line is to start. If not given,
the setheight of the first character set on the line is
used.

- The distance below the zero baseline of a side-lined
text line that the side-line is to end. If not given, the
side-line ends on the baseline.

The two forms of side-line differ in that side-iine-vary
adjusts the position of the top of the side-line by the
amount of extra space placed before the first line side-
lined. This allows successive, but separate, side-lines to
be connected and viewed as a single line. This adjust-
ment is not performed by side-lins.

no-side-line indicates that underlines are to be left under
all fully underlined lines.

10.2 Ruie-Filling

Rule-filling provides the same sort of line expansion as
the leader-filling described in chapter 7 with the
quad-with statement, except that the line is expanded
using a solid line with no extra space inserted at the
front or within the line as might be the case when fiiling
with a dash character. When present in a text line, a
space-, leader- or rule-filling point is used to place all the
extra space of the line.

<line format statement> —»
quad-with-ruie |
flush-left-with-rule |
justify-with-rule |
rule-specs <expression> , <expression>

quad-with-rule, flush-left-with-rule, and justify-with-ruie
function exactly as do quad-with, flush-left-with and
justify-with respectively, except that instead of a charac-
ter, a rule is used for filling.

rule-specs specifies the thickness and position of the line
to be used for rule-filling. The specification is inter-
preted in the same way as that for underlining. The posi-
tion measurement is taken from the text’s zero baseline
to the top of the line, and is usually a negative number
which places the line above the text baseline.

For example, Quad-with-rule does this.

10.3 Figure Rules

A figure is a character explicity constructed with
straight lines and rectangles. It fits in a text line as does
any other character and can be back-spaced over or be
back-spaced onto another character or figure.

10 Ruling and Underlining

<character format statement> —
figure <expression>
{ fig-rule <expression> , <expression> ,
<expression> , <expression> }
end-figure

The expression following the keyword figure specifies the
width of the character to be created. Each solid rectan-
gle is drawn by a fig-rule. Horizontal lines are drawn as
rectangles which are wider than they are high. Vertical
lines are drawn as rectangles which are higher than they
are wide. The four expressions in each fig-rule specify
the horizontal position, vertical position, width and
height respectively of a rectangle. The positions are mea-
sured from the zero baseline and left-hand end of the
width specified for the figure to the top left-hand corner
of the rectangle. Positive positions are measured to the
right and down from this point. fig-rules may overlap the
edges of their figure.

As an example, this #— was created using the follow-
ing figure definition:
figure 20 points
fig-rule 0, -5 pt, § pt, 5 pt
fig-rule 5 pt, -3 pt, 10 pt, 1 pt
fig-rule 15 pt, -5 pt, 5 pt, 5 pt
end-figure

10.4 Ruling in the Page Layout

<page format statement> —
rule <expression> , <expression>

This statement draws a solid rectangle of the width given
in its first argument and of the height given in its second
argument. The rectangle’s top left-hand corner is placed
at the current position in the page layout. Therefore, this
command is usually immediately preceded by an at
statement.

The rule statement is used to draw lines at fixed posi-
tions and of fixed sizes in the page layout. So, for exam-
ple, it can be used to draw lines under the page headings,
or a box around the page body.

10.5 Ruling in the Page Body

<paragraph format statement> —

rule <expression> , <expression> ,
<expression> , <expression> |

verticai-rule <expression> , <expression> ,
<expression> , <expression> |

vertical-rule-vary <expression> , <expression> ,
<expression> , <expression> |

end-para-rule <expression> , <expression> ,
<expression> , <expression>

These statements are intended to be used in the text
columns in a page body, primarily to draw lines between
and around paragraphs and table entries. All the state-
ments are normally placed at the start of a paragraph,
because the rules are positioned using the zero baselines
of the fifst and last lines of the current paragraph.

The first two arguments of rule indicate the position of
the top left-hand corner of the solid rectangle it draws in
relation to the left-hand end of the zero baseline of the
current line of the paragraph. They are the distance of
that corner to the right, and its distance below the base-
line, respectively. A negative distance “below” will place

35

the rectangle above the baseline. The third and fourth
arguments indicate the width and height, respectively, of
the rectangle.

The end-para-rule statement acts just the same as the
rule statement, except that the rectangle is positioned
with respect to the left-hand end of the zero baseline of
the last line of the current paragraph, rather than that of
the current line. To allow for the breaking of paragraphs
across columns, the end-para-ruie is also used at the bot-
tom of any coiumn whose last line is one of the lines in
the current paragraph. In this case the last line from the
paragraph in the column is used to determine the posi-
tion of the rule. No similar facility is provided for
automatically placing rules at the top of any column into
which a paragraph is broken as more flexibility in the
specification of heading material is usually required.
This situation can be dealt with by the use of rules in
carried-heads and continued-heads.

The verticai-rule and vertical-rule-vary statements act
just the same as the side-iine and side-line-vary state-
ments, respectively, except that the lines are not drawn
to replace underiines. Instead, the top of the vertical rule
is positioned with respect to the left-hand end of the cur-
rent zero baseline and the bottom of the rule with
respect to the left-hand end of the zerc baseline of the
_last line of the paragraph.

Note that the rule, vertical-rule and end-para-rule state-
ments can be used to draw the top, side and bottorn
lines, respectively, of 2 box around a paragraph. In addi-
tion, the position of a rule and of the top of z
vertical-rule are determined by the current line’s posi-
tion. So if they are used on an intermediate line of a
paragraph, the lines they draw will be, or will start
within a paragraph. This is especially useful in tables.

When a paragraph is split across text columns or pagss,
the vertical rules will be split accordingly. Also the
end-para-rules are drawn at the bottom of each part of
the split paragraph. If a carried head is defined to carry
a rule to the top of the next column when splitting a
paragraph, then paragraphs can have boxes drawn
around them whether they are split or not.

For exampie, the box around this sentence was created

by the statements listed below.

rule -2 pt, -1 ex, width plus 4 pt, 1 pt
vertical-rule -3 pt, 1 pt, -1 ex, 3 pt
vertical-rule width pius 2 pt, 1 pt,

-1 ex, 3 pt
end-para-rule -2 pt, 2 pt,

width plus 4 pt, 1 pt

10.6 Rule Enquiries

The four built-in functions below return the current
effect of the underline-specs and rule-specs statements.
The heights and positions of the line they generate are
dependent on the current setheight.

<built-in function call> —
underiine-posn |
underline-height |
rule-posn |
rule-heignt

The four functions return the underline position and
thickness, and the filling rule position and thickness

10 Ruling and Underlining

respectively. The values returned are those defined as

the arguments of the underiine-specs and rule-specs
statements.

37

11 Text Input

The setting of continuous text in the body of a page is
the primary purpose of a typesetting system. The text for
the body constitutes the bulk of the input for any job.
HUGO provides an automatic text-editing capability for
the processing of the many varieties of conditions which
can occur in this text. It is the responsibility of the writer
of the HUGO program to specify those attributes of the
text which identify different types of paragraphs, the
format of tables and the conditions under which types-
tyle changes.

The one feature of HUGO that probably most distin-
guishes it from other text composition systems is the
entire absence of system-defined commands in the tex-
tual input. If the nature of a specific job requires input
commands then they must be defined through the text
editing facility.

11.1 Automatic Text Editing

An if-you-find section specifies a condition in the input
text and its corresponding action.

<if-you-find section> —
if-you-find <pattern expression>
{ <local declaration group> }

{ <statement> }

The pattern expression specifies the condition in the
input text to be acted on by this section. At each position
in the input, the if-you-finds are looked at in order of
their appearance in the HUGO program. The first one
to successfully compare is used by the system. The state-
ments within it are executed. The text in the input which
was matched by the if-you-find is stepped over and not
processed further. The succeeding input character is the
next one scanned by the if-you-finds.

Any character of the input unmatched by any if-you-find
is set in the output by a system generated set statement.

11.2 The Start of the Text

<at-start section> —
at-start
{ <local declaration group> }
{ <statement> }

The at-start section specifies a sequence of actions to be
performed when HUGO attempts to fill the first page
body in a job with text. The statements within the at-
start section are executed just before any input is read or
any if-you-finds are executed.

The at-start section is primarily used to set headings
within the first page body and to set defaulit values for
running headings.

11.3 The End of the Text

<at-end section> —
at-end
{ <local declaration group> }
{ <statement> }

The at-end section specifies a sequence of actions to be
performed when the end of the input text is encountered.
Any text set during execution of the at-end section will
be set within the page body of the last page(s) in the job.

Note that the final layout secticn will be compieted and
the finaily sections executed after the execution of the
at-end section. The action taken at the end of the input
text in the absence of any at-end section is that of the
finish statement.

11.4 Patterns

A pattern expression is like a Boolean expression except
that it inciudes tests of the input text siream and per-
forms the other text matching functions required by an
if-you-find. However, its chief characteristic is still that
it either succeeds or fails.

<pattern expression> — <pattern subexpression>
[to-local <local variable> |
to-globai <global variable> |
to-global <list variable>]

<pattern subexpression> — <pattern term> |
<pattern subexpression> Or <pattern term>

<pattern term> — <pattern factor> |
<pattern term> and <pattern factor>

<pattern factor> =
<pattern built-in function call> |
{ <pattern expression>) |
<Boolean factor> |
<expression> |
<list name>

The built-in functions given above are only meaningful
in pattern expressions and cannot be used eisewhere.
They are defined in sections 11.4.2, 11.4.3, 11.4.4 and
11.4.5.

Examples of if-you-find sections:

if-you-find ‘-’
set ‘="
if-you-find sl
spaceband
/ puts a spaceband at the
/ start of each input line

if-you-find
‘{quad,’ and (without(‘]’) to-local q)
and "

quad q points
/ this defines a "quad” command that
/ can be placed in the input

11.4.1 Pattern Expressions

The or and and operators in a pattern can be interpreted
as: A or B means “find either A or B in the input
stream”; A and B means “find A followed by B in the
input stream”.

A pattern which is a Boolean subfactor succeeds or fails
as the Boolean subfactor succeeds or fails. It is con-
sidered to match the input stream if it succeeds but uses
up no text characters in doing so. A pattern factor which
is an expression is considered to succeed only if the char-
acter string which is the result of the expression matches
character-for-character with the corresponding number
of characters in the input stream. :

11 Text Input

11.4.2 Group Patterns

Group patterns match with any member of a class of
strings. The class to be used can either be specified by
the user or by HUGO.

There are two types of group patterns: those which
match only with strings of a given length, and those
which match with a string of any length. Both types of
group patterns can be defined to only match with char-
acters selected from a given set (for example, the digits).
The fixed-length group pattern fails if either it finds a
character not in the given set or there are not sufficient
characters left in the current input line for the compari-
son to be performed. The variable-length group patterns
never fail, and at worst match with the zero-length
string.

<pattern factor> —

<expression> alphas |
<expression> chars |
<expression> digits |
<expression> Ic-alphas |
<expression> uc-alphas |
<expression>

within <expression> |
<expression>

without <expression>

Fixed-length group patterns are specified by the opera-
tors:

(a) alphas: which will match with the given number
of alphabetic characters;

(b) chars: which will match with any string of the
given length; :

(c) digits: which will match with the given number of
digits (0,1,2,3,4,5,6,7,8,9);

(d) !c-alphas: which will match with the given num-
ber of lower-case alphabetic characters;

(e) uc-aiphas: which will match with the given num-
ber of upper-case alphabetic characters;

(f) within: which will match with any string of the
length specified by its first argument, made up
only of characters selected from its second argu-
ment; and

(g) without: which will match with any string of the
length specified by its first argument, made up
only of characters not contzined in its second
argument.

<patiern built-in function call> —

alphas |

chars |

digits |

ic-aiphas |

uc-aiphas |

within { <expression>) |
without { <expression>)

Variable-length group patterns are specified by the
built-in functions with the same names as the above
operators. The functions alphas, chars, digits, lc-aiphas
and uc-alphas have no arguments, and the functions
within and without have one argument, corresponding to
the second argument of the related operator. They will
match with the longest possible string of the kind of
characters they represent. Note that the chars function

38

matches with ail the remaining text of the current input
text line.

11.4.3 Position Patterns

<pattern built-in function call> —
el |
lpos (<expression>) |
roos { <expression>) |
st |
to-ipos (<expression>) |
to-rpos (<expression>)

The ipos function has one argument which specifies a
position within the input text line. The very start of a
line is considered position 1 and each character position
to the right increases the count by 1. So the argument of
lpos can be considered the position of the next character,
measured from the left of the input text line. The Ipos
function succeeds only if it is called when the pattern
matching process is at that position in the line.

The rpos function has one argument which specifies a
position within the input text line. The very end of a line
is considered position 0 and each character position to
the left increases the count by 1. So the argument of
rpos can be considered the position of the next charac-
ter, measured from the right of the input text line. The
rpos function succeeds only if it is called when the pat-
tern matching process is at that position in the line.

sl succeeds only if it attempts to match at the start of an
input line. It produces exactly the same effect as ipos(1).

el succeeds only if it attempts to match at the very end
of an input line. It produces exactly the same effect as
rpos(0). el “uses up” the end-of-line condition, so that if
it (or for that matter rpos(0)) is part of a successful pat-
tern match on a line, then no other if-you-finds will
match following it on the same line.

to-lpos will match with all the text in a line up until it
reaches the position from the left-hand end of the line
specified by its argument. It will fail if either that posi-
tion has aiready been passed or if the line isn’t long
encugh to get to the specified position.

to-rpes will match similarly with ail the text up to the
specified position, but in this case measured from the
right-hand end of the line. As in the case of to-lpos, it
will fail if it cannot get to that position.

11.4.4 Scanning Patterns

Scanning patterns allow the construction of more com-
plex searches than those ailowed by the use of basic pat-
terns. Scanning patterns have patterns as their argu-
ments and modify the normal operation of those patterns
in a variety of ways.

<pattern built-in function call> —
followed-by { <patiern expression>) |
many (<pattern expression>) |
not-foilowed-by (<pattern expression>) |
optional (<pattern expression>) |
up-tc (<pattern expression>)

followed-by succeeds if the pattern which is its argu-
ment succeeds, but followed-by does not actually *‘use
up” any text and is considered to match with zero char-
acters. It is useful for checking the right-hand context of

11 Text input

an item deing picked up by a pattern, yet leaving it in
the input siream for processing by other if-you-finds.

net-foliowed-by is similar to followed-by in its action,
but as its name implies, succeeds only if the pattern
which is its argument fails, and fails otherwise.

many wiil use the pattern which is its argument as many
times as possible. It is therefore a generalization of the
group patterns. For example, digits means the same
thing as many(1 digits). Like the group patterns, many
will succeed even if its pattern does not match, in which
case it will match with zero characters.

up-to is the generalization of the without function, much
as many is the generalization of the within function. It
matches with everything up to but not including the part
of the input line matched by its argument. It is, however,
unlike without in that if it is unable to find the pattern it
will fail.

optional matches with the string matched by its argu-
ment. However, if that match fails, optional does not fail
but rather matches with zero characters.
Example of using many:

If-You-Find ‘.’ and many(‘-.’}

/ This will match with any string of periods

/ separated by dashes, whereas

If-You-Find ‘.’ and within(‘-.")

/ wil: matca with a period followed by any

/ number of periods and dashes

/ in any order.

11.4.5 Examining the Next Line

A limited search of the text line following the line under
consideration by an if-you-find can be made using the
following functions.

<pattern built-in function call> —
next-line { <pattern expression>) |
no-next-line

next-line examines the start of the next line for the pat-
tern given as its argument. It will fail if either the pat-
tern fails or if there is, in fact, no next line. The latter
case means that the line being examined by the
if-you-find is the last line of the input.

Another way of determining if the current line is the last
line of the input is to use the no-next-line function,
which succeeds if there is no next line. It will match with
zero characters.

Neither the next-line nor the no-next-line functions can
be used in the pattern which is the argument of
nexi-line. Therefore, no more than two lines can be
examined at ome time without the text of those lines
being saved away, for example, stored in giobal vari-
ables.

11.4.6 List Patterns

A pattern factor which is a list name instructs HUGO to
compare the next part of the current input line with the
key of every element in the named list. If comparison
finds character-by-character equivalence, then the pat-
tern factor succeeds, and matches with the part of the
input line successfully compared with. If two or more
keys in a list can compare successfully, then one of them
is arbitrarily selected by HUGO.

39

Note that the key, rather than the value of each list ele-
ment is compared with. This way the value of the
matched element may be used to determine the action
taken by the HUGO program.

As an example, using the list defined in the example in
Chapter 4.1.4:

if-you-find L
/ will match with any digit from 1 tc 8.

11.4.7 Pattern Parameters

The to-locai option of a pattern expression ailows text
matched in the input stream to be processed by the
HUGO program. The local variable specified in the
to-local is given the value of the actual input string with
which the pattern expression matches. The appearance
of the local variable in the to-local option constitutes its
deciaration as a local variable of the if-you-find. The
same local variable may be used more than once in a
pattern, but the uses must be separated by ors in such a
way that for any match, only one value is given to the
local variable.

to-global operates in the same way as to-local, except
that the variable which is to be given a value must be
either a globai variable or an element of a list. Unlike
to-local, to-global does not constitute a declaration of
the given variable. The global variable or list must have
been previously declared as such in the HUGO program,
although the global variable or list element need not
have been previously given a value.

The local variable declared in a to-iocal may not be used
to produce the value given to it while the pattern is being
processed. This is because the local variable isn’t actu-
ally created until the pattern has succeeded, and the
associated program section entered. to-global, on the
other hand, does its job immediately on the pattern
which precedes it matching. So its value can be used
later in the same pattern, and the value of the global
variable or list element is changed whether or not the
pattern finally succeeds.

Care should be taken in using pattern parameters
embedded within other pattern elements. For example:

if-you-find ‘$° and

(optional(l alipha) to-local x)
/ will assign the alphabetic character found
/ to “‘x’’ if one was found, and the null
/ string otherwise. However
if-you-find ‘$’
and optional(l aipha to-local x)
will assign a value to *‘‘x’’ only if the
alphabetic character is found. If one is
not found, then any use of ‘‘X’’ within
the if-vou-find section will be in error.

S

11.5 The Rescan Statement
<rescan statement> — rescan <expression>

The rescan statement allows the HUGO program to gen-
erate a piece of text to be processed by the if-you-finds.
This text can be picked up by one if-you-find, and then
rescanned by another. Or it can be entirely the result of
the computations of the program.

The effect of the rescan statement is that its expression
argument is replaced in the current input record at the

11 Text Input

place currently advanced to by the if-you-finds. When
next resumed, the searching of the if-you-finds will
recommence at the start of the rescanned string. The
insertion of the rescanned string in the input record does
not affect the text aiready there, and in effect, lengthens

40

the record. So the interpretations of the Ipos and rpos
builtin-functions will be affected: in particular, the ipos
vaiues of all the remaining characters in the line will be
increased by the length of the rescanned string.

41

12 General Enquiries

This chapter contains descriptions of those parts of the
HUGQO language which do not affect the function of
HUGO programs, but which allow the user to check on
the status of the HUGO system. They may be used to
typeset or print headings for a composition job or to
implement an accounting package to be used with
HUGO. Other facilities, more dependent on the specific
implementation of HUGQO, are described in Appendix A.

12.1 Statistics

<built-in function call> —
char-count |
char-in-page |
chars-input |
film-length |
line |
line-count |
page-count |
total-set

All these functions return some indication of the amount
of work done by the HUGO system. They indicate:
{a) char-count: the total number of characters set,
{b) char-in-page: the total number of characters set
in the current layout,
{c) chars-input: the total number of characters read
from the text file,
(d) film-length: the total amount of linear output
medium used (in points).

(e} line: the total number of lines read from the text
fiie,

(f) line-count: the total number of lines set,

(g) page-count: the total number of layouts started,

{h) totai-set: the total width of all lines set (in
points),

12.2 Time and Date

<built-in function call> —
time-of-day |
seconds |
date |
julian-date

These functions return:

(a) time-of-day: a printable representation of the
current time using the 24-hour clock, to the near-
est second. For example:00:18:58,

{b) seconds: the time of day represented as the num-
ber of seconds since midnight accurate to a thou-
sandth of a second,

(c) date: a printable representation of the current
date. For example: 21 AUG 80

(d) julian-date: the date represented as a five-digit
number, the first two digits of which are the last
two digits of the year and the last three of which
are the number of the day in the year, with Janu-
ary 1 as 001 and December 31 as 365 (or 366 in
leap years). For example: 80234

42

Appendix A - Implementation Dependent Features

The features of HUGO described in this appendix are
very much dependent on the IBM /370 implementation
of the language which produces output to drive the
APS/4 phototypesetter. They may be required to have
substantially different meanings on other computers or
may even be meaningiess there. These features are pro-
vided because interaction between a HUGO program
and non-standard elemenis in its environment may
sometimes be necessary, but they should not be used
otherwise.

A.1 Special Conversion Functions

It is usually of no concern to the user of HUGO how
string and numeric values are stored inside the com-
puter. But when a file is being used that was produced
by ancther computer program, or when a file is put to be
used by another program, the requirements of that other
program may necessitate the use of special conversions.
These conversions convert back and forth between the
representations used by HUGO and those used by the
other programs. The other representation is stored by
HUGO in a string of characters which should only be
used for input or output.

The binary and packed data types described in this sec-
tion are a feature of the IBM /370 computer and may or
may not exist on other computers.

<subexpression> —
<subexpression>
bin <term> |
<subexpression>
pack <term>

<subfactor> — <subfactor> ebcdic

<built-in function cail> —
unbin { <expression>) |
unpack { <expression>) |
attn

The bin operator converts the number specified by the
second argument into binary format. The first argument
specifies the number of characters that that binary
representation is to occupy.

The pack operator converts its second argument to
packed decimal format. The length of the result is given
by the first argument. Leading zeros will be placed in
the argument to force a specific length.

The unbin function has one argument, which is assumed
to be a string in binary format, and which is converted
back into a number. The unpack similarly converts a
string back from packed format.

The ebcdic operator gives the character whose EBCDIC
number is the argument. Each character has an EBC-
DIC number whose value is determined by the
implementation and which allows it to be represented in
a program via the ebcdic command even if the character
is not on the input device.

The attn function returns the character normally used to
represent the “break™ character on the input device used
to produce text input for HUGO.

A.2 Device-Dependent Character Setting

Sometimes it may be necessary to use the character
codes of the typesetting device on which the output of a
HUGO program is set rather than those of the computer
on which the HUGO program is run. In addition, it may
occasionally be desirable to issue commands in the lan-
guage of the typesetting device.

<character format statement> —
escape-char <expression> |
nc-escape-char |
set-absolute
<expression> [, <expression>]

<built-in function call> — escape-char

The escape-char statement has as its argument a single
character which is to become the current “escape char-
acter”. When an attempt is made to set the escape char-
acter then the character following the escape character
is set without conversion from the computers’ character
set to that of the typesetting device. The no-escape-char
statement specifies that there is no escape character.

The escape-char built-in function returns the current
escape character if there is one, and the zero-length
string otherwise.

The set-absolute statement sets all its first argument
without conversion from the computers’ character set. It
may contain commands in the phototypesetters’ com-
mand language. The second argument, if present, is used
as the width of the first argument when set. This width
is used for line filling and justification.

A.3 Documents

The file used to input text for processing by the if-you-
find sections can be divided into sub-files called docu-
ments. The following built-in functions allow the HUGO
program to gather information about these documents,
about the input and output files and about the HUGO
job.

<built-in function call> —
input-volume |
output-volurne |
document-iine

The input-volume function returns the name or number
of the device used as the text file. Under OS/VSI this is
the volume serial number of the input device. But when
the "DOC” run-time directive is specified to divide the
input into documents, this function returns the identifi-
cation of the current document being read.

The output-volume function returns the name or num-
ber of the device on which text is set by a HUGO job.
Under OS/VS], this is the volume serial number of the
tape used to drive the phototypesetter.

The document-line function returns the count of lines
read in the current document if the “DOC” run-time
directive is used. Otherwise it returns the same value as
the fine built-in function.

Appendix A - Implementation Dependent Features

A.4 Job Identification and Accounting

<statement> —»
account
<expression> | , <expression>]

<built-in function call> —»

job |

job-name
The account statement places the data contained in its
first argument on the accounting file attached to the
HUGO job and flags the record as being of the type
specified in the second argument. If the second argu-
ment is not present, then the record type is chosen by the
HUGO system. The format of the accounting informa-
tion, and the available record types, are determined by
the accounting system being used.

The job function returns the job identification informa-
tion provided by the "JOB” run-time directive. If
*NOJOB” is in effect, this function returns the zero-
length string.

The job-number function returns the name or number of
the HUGO job. This value is determined by the environ-
ment in which HUGO is running. When running under
OS/VS1 it is the job name on the JCL JOB card.

A.5 Cpu-Time
<built-in function call> - cpu-time

If the information is available to HUGO, this function
returns the number of seconds of computer time the
HUGQO job has used. This number should be accurate to
one thousandth of a second. If not available, this func-
tion may either return zero, or a counted value indicat-
ing in some way how much work the HUGO job has
done. :

A.6 Error Handling

If the HUGO system encounters a user-caused error at
run-time, then the at-job-end is entered immediately.

43

This allows statistics to be gathered for all jobs, whether
they run to normal completion or not. If no at-job-end
section is in the HUGO program, or if the error is
encountered in the at-job-end section itself, then the
user’s program is terminated immediately, without fur-
ther processing of any kind.

<statement> —
error <expression> |
warning <expression>

<Boolean built-in function call> — error

The error statement causes HUGO to take the action it
normally performs when a serious user error is encoun-
tered. The expression argument is used as the text of the
error message generated. The error statement will termi-
nate normal program execution and either stop the pro-
gram immediately, or cause the at-job-end section to be
entered.

The warning statement is similar to the error statement
except that, as with other non-terminal user errors, just
a message is issued, and normal program execution is
not terminated.

The error function returns success if the at-job-end sec-
tion has been entered due to a user error. It will return
failure if the at-job-end was entered normaily, and will
also return failure if used in any other section of a
HUGO program.

A.7 Source Line Numbers
<built-in function call> — source-line

Each line i a HUGO source program is given a unique
number, which may or may not have an aiphabetical suf-
fix, and which is used in the source listing produced by
the HUGO compiler. source-line returns the number of
the line in the HUGO program from which it is called.
It may be used to identify user-generated error mes-
sages.

Appendix B - Language Summary

B.1 Syntax perma |
This appendix gathers together all the BNF rules in the romﬁn {
body of the report. zmzs-caps |

First, though, here is a short summary of BNF itself:

<thing> — means “a thing is ...” <Boolean built-in function cail> —

<this> <that> means “this followed by that” break |

<this> | <thai> means “cither this or that” engiish |

{ <this> } means “zero or more of this” french |

[<this>] means “an optional this” {zero or one of hyph
this).

<Boolean built-in function call> —» block

The Grammar: <Boolean built-in function call> - error

<adq statement> —

5 g <Boolean expression> — <Boolean term> |
add <expression> to <variable>

<Boolean expression> or <Boolean term>
<assignment statement> —

assign <expression> to <variabie> <Boolean factor> —

<Boolean built-in function call> |

<at-end section> — { <Boolean expression>)

at-end
{ <local declaration group> } <Boolean factor> — y
{ <statement> } <expression> lex-lit <expression> |

<expression> lex-le <expression> |
<expression> lex-gt <expression> |
<expression> lex-ge <expression> |
<expression> iS <expression> |
<expression> isnt <expression> |
<at-job-start section> — <expression> verify <expression>
at-job-start
{ <local declaration group> }

<at-job-end section> —
at-job-end
{ <local deciaration group> }
{ <statement> }

<Boolean factor> —
<expression> €q <expression> |

{ <statement> }
<at-page-end section> —
at-page-end
{ <local declaration group> }
{ <statement> }

<at-page-start section> —

<expression> ne <expression> |
<expression> It <expression> |
<expression> le <expression> |
<expression> gt <expression> |
<expression> ge <expression> |
<expression> even |
<expression> odd

at-page-start
{ <local declaration group> } <Boolean factor> —
{ <statement> } <expression> is-in <list name> |
<at-start section> —» <expression> isnt-in <list name>
at-start
{ <local declaration group> }
{ <statement> }

<Boolean term> — <Boolean factor> |
<Boolean term> and <Boolean factor>

<built-in function call> —

length (<expression>) |
<Boolean built-in function> — floor (<expression>) |

any-ex-notes lc (<expression>) |

<Boolean built-in function call> — uc (<expression>)
not { <Boolean expression>)

<attribute set name> — <identifier>

<built-in function call> —
<Boolean built-in function cail> — eof tab | bks |
char-string | digit-string | aipha-string |

<Boolean built-in function call> — c-alpha-string | uc-alpha-string

bedford |

boid | <built-in function call> -» input

exceisior e 5 <
helvetica } <built-in function call> — get { <expression>)
g?ellgiulm | <built-in function call> — list-size (<list name>)
modern | . <built-in function call> —

normal-case | string (<expression>) |

oid-heivetica | number (<expression>)

Appendix B - Language Summary

<buiit-in function call>
baseline |
font |
fudge |
slant |

width-of (<expression>)

<built-in function cali>
hyphen |
hyph-fill |
left-for |

left-indent (<expression>) |
right-indent (<expression>) |

sb-ratic |
sb-step |
width

<buiit-in function cail>
para-space |
suffix-space

<built-in function call>
max-column |
tabuiar-column |
tabular-position

<built-in function call>
index-item |
index-x |
index-y

<built-in function call>
at-y |
columns |
evenup-step |
layout-depth |
layout-width |
max-depth |
max-width |
muilti-column

<built-in function call>
area-count |

area-size (<expression>) |
footnote-count (<expression>) |
x-posn (<expression>)

<built-in function call>

a0 | at |a2 | a3 | a4 | a5]| a6 | a7 | a8

<built-in function call>
underline-posn |
underiine-heignt |
rule-posn |
rule-height

<built-in function call>
char-count |
char-in-page |
chars-input |
film-length |
line |
line-count |
page-count |
total-set

<built-in function call> —

time-of-day |
seconds |
date |
julian-date

-

-

-

-

-

—

-

—

-

-

<built-in function call> —
unbin { <expression>) |
unpack (<expression>)
attn

<built-in function call> — escape-char

<built-in function call> —
input-volume |
output-volume |
document-line

<built-in function call> —
job |
job-name

<built-in function call> — cpu-time
<built-in function call> — source-line
<carried head name> — <identifier>

<character> —» any graphic character other than
that which terminates the enclosing quoted

constant

<character format statement>
set <expression>

<character format statement>
shift-up |
shift-down |
no-shift

<character format statement>

times <expression> [, <expression>] |

modern <expression> [, <expression>] |
excelsior <expression> [, <expression>] |
helvetica <expression> { , <expression>] |

|

—

-

-

45

old-helvetica <expression> [, <expression>] |

perma <expression> [, <expression>] |

bedford <expression> [, <expression>] |
setsize <expression> [, <expression>] |

font <expression> , <expression>

[, <expression>]

<character format statement>
roman |
italic |
bold |
medium

<character format statement>
slant <expression> |
baseline <expression> |
fudge <expression>

<character format statement>
smail-caps |
normal-case

<character format statement>
guad <expression> |
guad-to <expression>

<character format statement>
underfine |
ne-underiine |

underline-specs <expression> , <expression>

-

-

-

-

—

Appendix B - Language Summary

<character format statement> —
figure <expression>

{ fig-rule <expression> , <expression> ,

<expression> , <expression> }
end-figure

<character format statement> —
escape-char <expression> |
no-escape-char |
set-absolute
<expression> [, <expression>]

<column position> — <expression>
[with <expression>]

<conditional statement> —

if <Booiean expression>
{ <statement> }

{ else-if <Boolean expression>
{ <statement> } }

[eise
{ <statement> }]

end-if

<constant> —
<quoted constant> |
<numeric constant>

<declaration section> —
<global declaration section> |
<list declaration section> |
<function declaration section> |
<user declaration section>

<digt> » 0111213145161 718}9

<expression> — <subexpression> |
<expression> cat <subexpression>

<factor> — <subfactor> |
<factor> index <subfactor>

<factor> —
<factor> th-elem <list name>

<factor> —
<factor> pp <subfactor>

<factor> — <factor> y-posn <subfactor>

<finally section> —
finally
{ <local declaration group> }
{ <statement> }

<first-layout section> —»
first-layout <layout name>

<function call> —
<function name> |
<function name>
(<expression> {, <expression> })

<function cail> —
<function name> |
<function name>
(<expression> {, <expression> })

<function declaration section> —»
function <function name>

[<type>] [entry] [static]
[starts-as <expression> }

[with <parameter deciaration>
{, <parameter declaration> }]

{ <locai declaration group> }

{ <statement> }

<function name> —» <identifier>

<global declaration section> —
global <global variable declaration>
{, <global variable declaration> }

<global variable> — <identifier>

<global variable declaration> —
<global variable> [<type>] [entry]
[starts-as <expression>] |
<global variable> [<type>] [entry]
literally <expression>

<HUGO program> —
{ <program section> | <segment> }
end-hugo

<identifier> —=
<letter> { <letter> | <digit> | — }

<if-you-find section> —
if-you-find <pattern expression>
{ <local declaration group> }

- { <statement> }

<indentation margins> —
<expression> [for <expression>]
[, <expression>] |
<expression> for-all

<initially section> —
initially
{ <local declaration group> }
{ <statement> }

<layout name> — <identifier>

<layout section> —
layout <layout name> <layout shape>
{ <local declaration group> }
{ <statement> }

<layout shape> —
<expression> , <expression> |
<expression> [portrait | landscape }

<letter> —
ASIEBEEC D RE M EIRG
IS K S S ME RN E
QIRIS|T|UIV|W
YA VZ o AR EAR] BN RESIRE
Fjtjoigivic
<line format statement> —
width <expression> |
finish-line |
turn-over
<line format statement> —
centre |
flush-left |
flush-right |
force-justify |
justify |
justify-centre |
justify-right

46

Appendix B - Language Summary

<line format statement> — <page format statement> —
spaceband | use-first <reference head name> |
vari-space | use-fast <reference head name>

sb-ratic <expression> |

sb-step <expression> <page format statement> —

foot-balance |

<line format statement> — foot-bottom |
quad—OL_ﬂ]] - foot-lineup |
quac-with <expression> [, <expression>] | no-foot-balance |
flush-left-with <expression> no-foot-bottom |
e <expression>] | no-foot-lineup
justify-with <expression>
[, <expression>] <page format statement> —

: overfill <expression>
<line format statement> —

break | <page format statement> —
no-break | at <expression> , <expression>
break-here |

<page format statement> —

discretionary <expression>
next-fayout <layout name>

<line format statement> —

hyph | <page format statement> —
nohyph | body <expression> |
english | finish-body [long] |
french | finish [long] |
hyph-margins <expression> new-body [long] |
[, <expression>] | sub-body |
ladder <expression> | Qoymahze—page |
nyphen <expression> | finish-column |
hyph-fill <expression> | reserve <expression>

min-word <expression> |

: t stat t
stick-hyphens | <page format statement> —

: top-flush
no-stick-hyphens ju:t.ify-venlically |
<line format statement> — evenup |
left-indent <indentation margins> | no-evenup |
right-indent <indentation margins> evenup-step <expression> |
PraN ShiaEn el e i) . maximu'm-expansion.<expressien>
quad-with-rule | no-maximum-expansion
flush-left-with-rule | <page format statement> —
justify-with-rule | body-space <expression> [, <expression>]

rule-specs <expression> , <expression>
<page format statement> —

- e : :
<list declaration section> — galley <expression>

list <list name declaration>

{, <list name declaration> } <page format statement> —

- . o fumns <column ition>
<list name> -» <identifier> <o | POS

{, <column position> }

<list name declaration> —

<list name> [<type>] [entry] <page fOlTﬂat statement> —)

. 5 : § multi-columns <column position>
<list variable> — <list name> (<expression>) {, <column position> } |
<local declaration group> — into-column <expression> |

local <local variable declaration> lineup

i, <local variable declaration> } page format sttt

<local variable> — <identifier> index-item <expression>
<local variable declaration> — d{ .<§tatemcm> }
<local variable> [<type>] [static] SR
{ starts-as <expression> | | <page format statement> —
<local variable> [<type>] rule <expression> , <expression>

literally <expression>
<page format statement> —

Sooiais el g ex-note-body <expression> |

[+[! g-«}ﬁ;fi)gi;)] {l <digit> | ex-note-columns <expression>
[+] = 1. <digit> { <digit> } {, <capeession> | |

ex-note-lineup |
<output statement> —» output <expression> no-ex-note-lineup

Appendix B - Language Summary

<paragraph format statement> —
save <attribute set name>
restore <attribute set name> |
save-defauits |
restore-defauits

<paragraph format statement> —
sub-para [ieave]

<paragraph format statement> —
biock |
unblock |
min-para <expression> |
widow <expression> [, <expression>]

<paragraph format statement> —

on <expression> | , <expression>] |
feading <expression>

[, <expression>] |
para-space <expression>

[, <expression>] |
suffix-space <expression>

[, <expression>] |
no-para-space |
no-suffix-space |
space-block <expression>

<paragraph format statement> —
kill-head <carried head name>
kill-all-heads

<paragraph format statement> —
tab |
chunk [leave] |
_sub-entry [leave] |

<paragraph format statement> —
top-align |
bottom-align |
drop-aiign |
centre-align |
top-previous |
bottom-previous

<paragraph format statement> —
foot-ref |
no-foot-head

<paragraph format statement> — side-ref

<paragraph format statement> —
ex-note-ref |
no-ex-note-ref

<paragraph format statement> —
division <expression> { , <expression> }

<paragraph format statement> —
side-line <expression> , <expression>
[, <expression> , <expression>] |
side-line-vary <expression> , <expression>
[, <expression> , <expression>] |
no-side-line

<paragraph format statement> —
rule <expression> , <expression> ,
<expression> , <expression> |
vertical-rule <expression> , <expression> ,
<expression> , <expression> |

vertical-rule-vary <expression> , <expression> ,

<expression> , <expression> |
end-para-rule <expression> , <expression> ,
<expression> , <expression>

<paragraph start statement> —
head [leave] |
tag [leave] |
inter-para [leave] |
cut-line | leave] |
text { leave] |
display-head { leave]

<paragraph start statement> —
carried-head <carried head name>
[leave] |
continued-head <carried head name>
[leave]

<paragraph start statement> —»
reference-head <reference head name>
[leave]

<paragraph start statement> —
footnote [leave] |
foot-head [leave]

<paragraph start statement> —
sidenote [leave]

<paragraph start statement> —
ex-note [leave] |
ex-note-head [leave]

<parameter declaration> —
<local variable> [<type>] [static]

<pattern built-in function call> —

aiphas |

chars |

digits |

lc-aiphas |

uc-alphas |

within (<expression>) |
without (<expression>)

<pattern built-in function call> —
el |
lpos (<expression>) |
rpos (<expression>) |
S|
to-lpos (<expression>) | -
to-rpos { <expression>)

<pattern built-in function call> —
followed-by (<pattern expression>) |
many { <pattern expression>) |
not-followed-by { <pattern expression>) |
optional (<pattern expression>) |
up-to { <pattern expression>)

<pattern built-in function call> —
next-line { <pattern expression>) |
no-next-line

<pattern expression> —» <pattern subexpression>
[to-local <local variabie> |
to-global <global variable> |
to-global <list variable>]

Appendix B - Language Surmmary

<pattern factor> —
<pattern built-in function call> |
{ <pattern expression>) |
<Boolean factor> |
<expression> |
<list name>

<pattern factor> —

<expression> alphas |
<expression> chars |
<expression> digits |
<expression> Ic-aiphas |
<expression> uc-alphas |
<expression>

within <expression> |
<expression>

without <expression>

<pattern subexpression> —> <pattern term> |
<pattern subexpression> or <pattern term>

<pattern term> — <pattern factor> |
<pattern term> and <pattern factor>

<program section> —
<set-up section> |
<deciaration section> |
<if-you-find section> |
<user-code section> |
<first-layout section> |
<layout section>

<put statement> —
put <expression> , <expression>

<quoted constant> —»
' { <character> }’ |
¢ { <character> } 7 |
7 { <character> } " |
« { <character> } »

<reference head name> — <identifier>

<repetitive statement> —
loop
{ <statement> |
exit-if <Boolean expression> }
end-loop

<rescan statement> — rescan <cxpression>

<segment> —
segment
{ <program section> }
end-segment

<set-up section> —
<initially section> |
<finally section> |
<at-start section> |
<at-end section> |
<at-job-start section> |
<at-job-end section> |
<at-page-start section> |
<at-page-end section>

<statement> —
<assignmernt statement> |
<add statement> |
<conditional statement> |
<repetitive statement> |

<output statement> |

<put statement> |

<user statement> |

<then statement> |

<character format statement> |
<paragraph start statement> |
<paragraph format statement> |
<table definition statement> |
<page format statement> |
<rescan statement> |

<stop statement>

<statement> —»
account
<expression> [, <expression>]

<statement> —
error <expression> |
warning <expression>

<stop statement> —» Stop

<subexpression> — <term> |
<subexpression> of <term> |
<subexpression> start-at <term>

<subexpression> —
<subexpression>
bin <term> |
<subexpression>
pack <term>

<subfactor> —=
<variable> |
<constant> |
<function call> |
<built-in function call> |
<subscription> |
<factor> percent |
{ <expression>)

<subfactor> —

<subfactor> ems |
<subfactor> ens |
<subfactor> thins |
<subfactor> ex |
<subfactor> picas |
<subfactor> points |
<subfactor> inches |
<subfactor> cm |
<subfactor> mm

<subfactor> — <subfactor> ebcdic

<subscription> —
<subfactor>
(<expression> [, <expression>])

<subterm> — <factor> |
<subterm> mul-by <factor> |
<subterm> div-by <factor> |
<subterm> modulo <factor>

<table column setup> —
<expression> [, <expression>]
{ <statement> }

<table definition statement> —
table { <statement> }
{ tcol <table column setup> }
end-tabie .

49

Appendix B - Language Summary

<term> — <subterm> |}
<term> plus <subterm> |
<term> minus <subterm>

<then statement> — then

<type> — string | number

<user-code section> —
user-code <expression> [only]
{, <expression> { oniy]}
{ <local declaration group> }
{ <statement> }

<user declaration section> —
define <user statement name>
[entry]
{ with <parameter declaration>
{, <parameter declaration> }]
{ <local declaration group> }
{ <statement> }

<user statement> —
<user statement name> |
<user statement name>
<expression> { , <expression> }

<user statement name> —-» <identifier>

<variable> —
<function name> |
<global variable> |
<local variable> |
<list variable>

56

Appendix B - Language Summary

B.2 List of Synonyms

The symbols in the first column may be used to repiace
those in the second wherever they appear in the gram-
mar.

{ampersand) and
colony s bt ot cat
* (asteriskyee Sl of
! {(exclamation mark) or
T(percent)is it percent
@ {atsign) - ..-..---. start-at
s(semicolon) then
Alphars . o s L alphas
OV e S e S , {(comma)
CalEd o s to-local
CERtBr i e centre
center-align............ centre-align
Chah e, e chars
calumn L columns
GIGHER R S I digits
o T e b et s N B div-by
SO b o N A SR ems

justify-center
iczaiphaii i . o

51

ens
ex-note-coiumns
inches
inches
left-indent
if-you-find
iustify-centre
ic-alphas

is

isnt

mul-by

picas

picas

points

points

points

tcol

thins
uc-alphas
mul-by

Appendix B - Language Summary

B.3 Operator Priorities
The order of execution of the varicus types of operators

in HUGO is determined by the language’s grammar.
The following is a summary of that order.

Each operator has a priority level which determines the
order in which it is executed. Higher priority operators
are evaiuated first. For example, in:

a plus b mul-by ¢ minus d

the mul-by operator is evaluated before the other two
because of its higher priority. Operators of the same pri-
ority level are evaluated in left-to-right order. So in the
exampie, pius is evaluated before minus. Parentheses
can, of course, be used to change this order.

The priority levels of the operators are:

tosloeak ...l 0
togiobal ... __._...... 0
GIF Lrrak e S B et SR 1
AMGR: aettaah = B e 2
alphast 3
ISR U o s 3
igsiLs Con 3
CCEPSer Bt S At i 3
EVENT G T 3
(o e e e E R Al 3
gl e 3
s e S 2
ISR g e 3
ISRIE PG R DI ol 3
iSat=ine. . ..o e 3
lceaiphas ... 3
fesi e e BE . = R g 3
eXeg8 - 3
ledcgt L e 3

odd o T e
uczalphasao. ...
VERTY IS PN . .
WAL SR e S s

Packes e

Foloh el 5Lk bl e S s

TS s hencsaones 5aEcAs

percentian. h el
PICAS, S ah e e
POIRISE e
IhinS N e

52

[y

Appendix B - Language Summary

B.4 Defauit Atiributes

Unless otherwise specified in a2 HUGO program, the
character, line and paragraph makeup attributes result-
ing from the execution of the following statements apply.

column 0

baseline O
body-space 1 pica, O
break

english / hyphenation
evenup

evenup-step 1 pica
ex-note-lineup

fudge 0

hyphen ‘-’

hyph-£fill 100%
hyph-margins 3, 3
justify
justify-vertically
ladder 3

left-indent O for-all
min-para 3

min-word 5
no-escape-char
no-foot-balance
no-foot-bottom

no-foot-head
no-foot-lineup
no-maximum-expansion
no-para-space
no-shift
no-sideline
no-suffix-space
no-underiine
overfill 2 picas
right-indent O for-all
rule-specs 5% ex, -30% ex
sb-ratio 27%
sb-step 0.1 points
slant O
stick-hyphens
times 10 points on 11 points
roman
medium
normal-case
top-align
unblock
underline-specs 5% ex, 15% ex
widow 2, 2
width 40 picas

53

54

Appendix C - Using the TEPB Implementation of HUGO

The current impiementation of HUGO runs on an
IBM/370 computer operating under OS/VSI. HUGO
jobs must be described to the operating system by the
Job Control Language (JCL). This appendix describes
how to submit HUGO jobs, the options available to aid
in running HUGO jobs, and a number of utility pro-
grams to help both in this process and in the manipula-
tion of text prepared for running through HUGO. These
facilities are not part of HUGO itself but are part of the
support provided to allow HUGO to be used conven-
iently.

C.1 Invoking the HUGO System

Three catalogued procedures are available for running
HUGO on the IBM/370 computer. The first is used
when the HUGO program and the input data can be
included “in-stream” with the data. The JCL is:

// EXEC HUGO1

HUGO program source
//GO.SYSIN DD *

input data
17

The second catalogued procedure is used to allow
greater flexibility in the input of the HUGO program
and its data. The program source should be placed as a2
single document on an archive tape followed by the input
data split into as many documents as required. In this
case the JCL is:

// EXEC XHUGO1,V=tape#
11

The third procedure is used to run Bilingual jobs. The
program source should be placed as a single document
on an archive tape, followed by the MERGE description
of the input codes used (see the description of the
MERGE program), followed by the English and French
input data split into documents as required. The JCL to
be used is:

// EXEC BHUGO1,V=tape#

/1

The tape used for XHUGO1 or BHUGO! should be one
of the machine room work tapes.

C.2 Compiler Directives

The HUGO compiler reads a HUGO program called the
source program. It generates a form of this program
suitable for execution by the HUGO run-time system,
which is called the object program. In addition, the com-
piler produces a variety of listings suitable for printing
on a high-speed line printer.

Compiler directives control not the object program pro-
duced by the compiler, but rather the printed listings
and other products of the compiler. Some directives can
be specified in the PARM field of the JCL card, some
can be specified in the source of the HUGO program
and some can be specified in both places.

The directives specified in the PARM field must be
preceded by a slash character and separated by commas.
No additional space characters are permitted in the
PARM field, and all the information must be entered

using upper-case letters. Those directives that must be
given a value such as "SIZE” and “INCLUDE" must be
separated from their vaiues by an equals sign, as in
~SIZE=10000".

The directives specified in the source of the HUGO pro-
gram must each be placed on a line by themselves, with
the directive preceded by a hyphen character. Any num-
ber of space characters may be placed before or after the
hyphen character. Any directive to be given 2 value,
such as “INCLUDE” must be separated from its value
by one or more space characters, as in ” - INCLUDE
TEXT”. Either upper- or lower-case letters may be used
to enter these directives.

The following is a list of available directives. All can be
used in either the PARM field or program source uniess
otherwise indicated. All directives which enable a condi-
tion or a listing can be disabled by prefixing the directive
with “NO”.

AUTOTAB causes the compiler to automatically gen-
erate code for the user-code section ”user-code tab
tab” without it needing to be included in the pro-
gram source. It can only be specified in the PARM
field.

DUMP instructs the compiler to list the object pro-
gram it outputs in numeric form.

GOMAP instructs the compiler to include a record of
the line numbers in the object program so that they
may be used to generate error messages at run-time.

INCLUDE has as its value the name of a source
library member, the text of which is to be included
in the input to the compiler. The source library is
described later.

ISCURCE instructs the compiler to list the contents
of all source library members included by directives
in the source program.

LEVEL has as its value the lowest level of error mes-
sage to be generated. Messages are grouped into
levels to minimize the number of error messages
generated by a single error in the source program.
This directive can only appear in the PARM field.

LEX instructs the compiler to list each symbol it reads
from the input together with the lexical class the
compiler has assigned to it. It can only be specified
in the PARM field.

LIST instructs the compiler to list the object program
that it genrates, in symbolic form.

MAP instructs the compiler to list the correspondence
between the source lines and the code it generates.
This is the table output by the GOMAP directive.

MAXERR has a value which is the number of errors
the compiler can encounter in a source program
before it terminates compilation. This directive can
only be given in the PARM field.

OBJNUM instructs the compiler to print the location
in the generated object program corresponding to
each line of source program if SOURCE is enabled.
This number is similar to that listed by the MAF
directive.

PAGE instructs the compiler to list the next line of
the source program on a new page. This directive is
only meaningful when the SOURCE directive is

Appendix C - Using the TEPB Implementation of HUGO

enabled, and can only be placed in the source pro-
gram.

PROTECT instructs the compiler to allow the put,
account and stop statements, the get built-in func-
tion and the at-job-start, at-job-end, at-page-start
and at-page-end sections only in source program
text taken from the source library member inciuded
by a PARM field directive and to flag them as
errors if they come from any other source. This
directive can only come from the PARM field.

PSOURCE instructs the compiler to list the program
source lines included from a source library member
by a directive in the PARM field. This directive can
only come from the PARM field.

SI1ZE has a value which is the size in bytes of the larg-
est object program the compiler can generate. The
value can also be specified in thousands of bytes by
suffixing the number by the letter “K”. This direc-
tive can only appear in the PARM field.

SOURCE instructs the compiler to list the text of the
input source program.

TABLES instructs the compiler to list the size of the
various components in the object program it gener-
ates and also all variables, user-defined statements
and built-in functions used in the program.

Unless otherwise specified the compiler uses these direc-
tives:

AUTOTAB NODUMP GOMAP
ISOURCE LEVEL=4 NOLEX
NOLIST NOMAP MAXERR=9999
NOOBJNUM NOPROTECT NOPSOURCE
SIZE=40K SOURCE NOTABLES

Any source program line which the compiler considers to
contain an error is listed in spite of NOSOURCE, NOI-
SOURCE or NOPSOURCE being in effect.

When using one of the procedures described in section
C.1, the PARM field for the compiler must be referred
to on the EXEC card either as PARM.HUGO, or as
COPT, in which case the slash preceding the directives
must be omitted.

C.3 Run-Time Directives

The HUGO run-time system reads in an object program
generated by the HUGO compiler and executes it. Run-
Time directives allow certain aspects of this execution to
be controlled or listed. The directives can only be entered
in the PARM field in the JCL used to invoke HUGO.
Directives which take a value must, as with the compiler
directives, be separated from their value by an equals
sign, and this list of directives may not contain any space
characters.

A list of directives follows. As with the compiler, those
directives which enable conditions or listings can be pre-
fixed with "NO” to disable them.

CMDT asks for 2 count to be kept of the number of
times each different command in the pscudo-
machine-language processed by the interpreter is
executed, and for a listing of these counts to be pro-
duced, sorted in order of frequency.

DOC indicates that the document descriptor lines gen-
erated by XPORT are to be used to divide the text

55

input into documents. In this case the text following
the equals sign in these lines is returned as the value
of the input-volume built-in function, and the num-
ber returned by the document-line function is made
to count the text lines within each document start-
ing at 1. When used to divide documents, the docu-
ment descriptor lines are not made available to the
if-you-find sections of the HUGO program, nor are
they typeset.

FILM has a value which is the maximum length in
metres of output medium to be produced by a
HUGO program. The program is terminated if this
length is exceeded.

GLIST instructs the interpreter to produce z short
listing each time space is recovered from the area in
which HUGO strings are stored.

HEAP has a value which indicates how many ele-
ments are to be allocated to all lists and
index-items.

JOB may or may not have a value. If present, the
value is used as the result of the job built-in func-
tion. If JOB is specified without a value, then the
first line of SYSIN is examined. It is expected to
start with *JOB”, with JOB spelt with upper- or
lower-case letters, and with one-or-more spaces
after JOB. The remaining text on the line is used as
the result of the job function and this line is deleted
from the input.

LINET may have zero or two values, separated by a
comma. This directive instructs HUGO to list each
line of output text in the form used by the photo-
typesetter as it is created. If given, the two values
give a range of input line numbers outside of which
this listing is not to be produced.

LIST instructs HUGO to list the resuits of page
makeup each time a text body is “locked up”.

RECSIZE has a value which is the maximum length
of a logical record that can be processed by the if-
you-find sections. The strings inserted into the input
by the rescan statement increase the size of the
input records and so may affect the use of this
directive.

TRACE may have zero or two values, separated by a
comma. This directive instructs HUGO to list each
command in the object program as it is executed. If
given, the two values give a range of locations in the
object program for which tracing is to be done.
Otherwise, the whole program is traced.

TRACEIN has a value which is the number of the
first input text line on which tracing is to start.

TRACEL has a value which is the number of com-
mands to be executed before tracing is to be started.

TRIMCR instructs HUGO to remove carriage return
characters from the end of records before they are
processed by the if-you-find sections. NOTRIMCR
should always be specified when non-text fields are
input to HUGO.

VECS has a value which tells HUGO the maximum
number of text lines, headings, and index-items that
can appear in the body of a layout. Note that each
line in each entry of each table chunk and each line
in each division entry is counted as a text line.

Appendix C - Using the TEPB Implementation of HUGO

The values used unless otherwise specified are selected
from:

NOCMDT NODOC FILM=2 NOGLIST
HEAP=500 NOJOB NOLINET NOLIST
RECSIZE=1000 NOTRACE TRACEL=0
TRIMCR VECS=1000

When using one of the procedures described in section
C.1, the PARM field of the run-time step must be
referred to as either PARM.GO, or NOPT, in which
case the slash preceding the directives must be omitted.

C.4 Submitting Jobs Through ATS

The JCL for running 2 HUGO job or one of the utilities
described in this appendix can be submitted to OS from
punch cards. However, when the HUGO program and
input data have been prepared on ATS, the JCL can be
submitted from the terminal. Only a job card has to be
added to the JCL given above, and there are only two
differences from submitting by cards:

The job name must be of the form ZOooonnn where
7000” is the operator number submitting the job and
»nnn” is a three digit number chosen by the submitter to
separate his individual jobs from each other. And the job
card must be immediately preceded by a line containing

$tizzzzzzzz;dummy

The character set used at the terminal is the same as on
the keypunch except that: (a) lower case will be con-
verted to upper case, {b) overstruck characters are
reduced to their last character, and (c) some characters
display differently (in particular, the ¢ cedilla character
must be used to represent an equals sign). A sampie job
card is:

//Z0186300 JOB (Q9,T148),HUGO,

// MSGLEVEL=(1,1),MSGCLASS=P,TIME=2

Note that the print class P is normally used with jobs on
the 148.

To submit a job an operator needs access to the z0 queue
and to an intermediate disk file. Assuming operator 186
wishes to submit the job in document 7J300”, the follow-
ing sequence of commands would be used:

$x:20;J300

$ 0:;disk;20;all;186

Jobs can be deleted from the z0 queue before being out-
put (by o) using the queue delete command:

$°d;20;186;J300

This command deletes the job J300 belonging to opera-
tor 186 from the z0 queue. After the "§0” command
has been executed, only the OS operator can delete a
job.

The contents of an ATS queue can be listed. To list the
contents of the queue "z0”, before it has been emptied
by the "§'0” command, the foilowing command can be
executed:

$°1:20

Jobs submitted by operators can receive data directly
back from the computer. Assuming that operator 136
has access to the file called 7da001” and that job J300
contains the following JCL card which is used for writ-
ing:

/ /SYSPRINT DD DSN=ATS.SPOOL1,DISP=SHR

then executing the rewind command:
§SREW;da001

before the job is submitted, and the input command
after the job has completed running:

$°1:da001;p0o009;20;a11;186

will return the data written on the SYSPRINT card as a
message. Any print data set from a job can be returned
this way, using any ”da” data set. Note that the IBM
names for the files are the same as the ATS names
except that “da” is replaced by “ATS.SPOOL” and that
leading zeroes are removed from the file number.

The ATS procedure facility can be used to substantially
reduce the amount of typing required to submit a job.

C.5 Stand-Alone Bilingual Merge Pregram

A program called MERGE exists which takes as input
an XPORT-format file and interleaves the French and
English paragraphs on that file to produce a single out-
put file, which is likewise in XPORT-format. This pro-
gram can be used to re-arrange Bilingual text in 2 form
suitable for use with the multi-stream page makeup cap-
ability of HUGO. The MERGE program is unable to
provide all the error recovery options necessary for such
a function, as the text editing system used to prepare
input for HUGO is, so this utility is only intended to be
used in the absence of other ways of merging text. The
user of the program can define those codes which are to
be used as interleaving points, those which mark the
start of English and French text and those which are to
be inserted in the output to record where interleaving
was done.

The input to MERGE must consist of, in order:

1. a description of the codes to be used,

2. English text, preceded by a special code which indi-
cates it is such, and

3. the corresponding French text, likewise preceded by
an identifying code.

4. Optionally, further pairs of groups of English and
French text.

The description, English text and French text occupy the
one file. The program uses all the lines up to the first
line on which a code is actually used as the description.
Each code is defined on a separate line. A code defini-
tion line consists of a code class identifier, followed by
one or more blanks, followed by the code in question.
The code class identifier specifies what function that
code will perform. The different identifiers are:

717 Tells the program to insert this code in front of
English line-up groups.

727 Tells the program to insert this code in front of
French line-up groups.

737 Tells the program to insert this code in front of
English line-up groups that have no corresponding
French.

#47 Tells the program to insert this code in front of
French line-up groups that have no corresponding
English.

~E” This code appears at the head of the English
input text.

»F» This code appears at the head of the French input
text.

#17 This code marks ”line-up” paragraphs in the

Appendix C - Us}'ng the TEPB Implementation of HUGO

input that are expected to have a corresponding
paragraph in the other language.

= A" This code marks ”line-up” paragraphs expected
to have no corresponding paragraph.

»S” This code marks a ”sidenote” paragraph. Side
notes precede other types of paragraphs, take on the
characteristics of those other paragraphs, and are
grouped with them for interleaving purposes.

»T» This code marks a “tag” paragraph which is to be
grouped with any preceding line-up paragraph for
interleaving. Codes not described in the definitions
are assumed to be "T” types, and so this code will
not normally be used. :

0,1,2,3,4, Eand F - type paragraphs must be defined
exactly once in the description. Many or no L, A, S and
T - type paragraphs may be defined. The program
inserts codes defined by 1, 2, 3 and 4 - types. It deletes
codes defined by O, Eand F - types. L, A, Sand T -
types are left alone.

All codes used with MERGE must start with the same
character. The normal character used is the asterisk (¥).
This may be changed by the following description line:

0

This means that the code delimiter character is to be
changed from the asterisk to the slash character.

The JCL for running MERGE without HUGO process-
ing is:

// EXEC PGM=MERGE

//STEPLIB DD DSN=TPS.Q.PGM,DISP=SHR

//SYSUT! DD input file description

//SYSUT2 DD output file description

//SYSUT3 DD SPACE=(CYL,(1,1)),UNIT=SYSDA,

// DCB={(RECFM=VB,LRECL=256,BLKSIZE=6200)

C.6 XPORT Format Files

Three programs exist which support the XPORT format
of text files. These programs are available on the TEPB
IBM 370/148.

The XPORT format file is simply the data placed on an
IBM standard-labeled variable-blocked file with a car-
riage-return character placed at the end of each line of
text. It is the preferred form of input to the current
implementation of HUGO.

(In the following, ¢ represents the equals sign on the
kepunch

XPORT converts an archive tape to an XPORT format
file. To run it, code:

// EXEC XPORT,V=archive tape number

This procedure creates a temporary file called
‘& & TEXT on which it places its output. This name can
be changed, for example to ‘& &DATA’, by adding the
field FN="& &DATA’ to the EXEC card. Alternatively,
the SYSUT! DD card can be overridden by a descrip-
tion of the desired output file.

If the field OPT="SPLIT is added to the EXEC card,
and a SYSUT2 DD card describing 2 second output file
is added to the JCL, then the first document on the input
archive tape will be put on the SYSUT!] file and the rest
of the input will be placed on the SYSUT?2 file.

57

The output file descriptions must either contain their
own DCB information (as is done in the procedure for
the & &TEXT file) or specify already existing files, as
this information is not provided by the program. For
compatibility with the physical standards for XPORT
format tapes, when tape output is used from XPORT,
only one output fiie should be used, and the SYSUTI
DD card should be coded:

//SYSUT1 DD DSN=file name,

// UNIT=3400,DISP=(,KEEP),

// DCB={RECFM=VB,BLKSIZE=2048,LRECL=235,DEN=3)

The other options available with XPORT, which can be
coded in the same way as the SPLIT option, are:

TRIMCR, which places records on the output file
with no trailing carriage return character. This
option is normally not used with HUGO, and con-
verts otherwise empty lines of text into lines con-
taining a single space character. This option is most
useful in conjuction with FIX.

FIX, which forces all the recerds output from
XPORT to be of a certain length. It forces this
length by truncating longer records and by padding
shorter records with space characters. The required
Jength is indicated by piacing a ¢ after FIX, and fol-
fowing that by the length, as in "FIX=80". This
option is usually used in conjunction with the
TRIMCR option.

DOC, which causes the document name and operator
information from the input to be placed in the out-
put for the use of HUGO. The lines containing this
information are prefixed by an equals sign. For
example, the document ‘Doc’, belonging to operator
185, submitted by operator 186, and read from
archive tape 200999, would be prefixed in the out-
put by the line ‘=Doc:185;186;200999". The use of
this option by the HUGO run-time system is
described with the HUGO run-time directives.

MINDY converts an XPORT format file to an archive
tape. To run it, code:
// EXEC MINDY,V=archive tape number,
// DOC=cocument description
The document description is mandatory and must be in
one of two formats:
*document name:operator number’

or

‘document name:operator number;document size’
In the first form a single document is placed on the out-
put archive tape with the specified name. In the second,
the input file is split into documents of the specified size.
The given document name has a sequence number
appended to it to generate unique names. In both forms

the given operator number is used in generating the
archive tape.

The input for MINDY is normally taken from the tem-
porary file ‘& & TEXT'. This file can be overridden in
the same manner as for XPORT.

PUTXPT lists an XPORT format file. To run it code:

// EXEC PUTXPT

Here, again, the input for printing is taken from the

temporary file ‘& &TEXT’, which can be overridden as
in XPORT.

Appendix C - Using the TEPB Implementation of HUGO

C.7 Other Utilities

Another two utilities which can be used for listing,
although not specifically designed for use with XPORT
files, are LIST23 and TAPEEDIT. The former is used
for listing a file in hexadecimal format, and is invoked
by:

// EXEC LIST23,FN='file name’,PARM=HGD

The file name can be any temporary or permanent disk
file, and if the number of input records printed needs to
be restricted, the letter “L” followed by the five-digit
number of records can be appended to the PARM field.
For example, if only two hundred records are required,
the field can be coded "PARM=HGDL00200".
TAPEEDIT is used to print the whole of a magnetic
tape, including the labels. It is invoked by:

// EXEC TAPEEDIT,V=tape volume serial number
The number of records printed may be restricted by
specifying the last file and block required. For example,
if the last record reguired is the fifth record in the

second file then, assuming that tape 200999 is to be
listed, the following JCL would be used:

// EXEC TAPEEDIT,V¢200999,EB¢5,EFG2

58

C.8 Updating the Source Library

A source library member may be added to or replaced
on the standard HUGO source library by the following
procedure:

First the text of the member must be piaced on an
archive tape, and then XPORT must be used to copy it
from there to the library. If the archive tape used is
number 200999 and the member name is GEORGE, for
example, then the JCL is:

// EXEC XPORT,V=200999
//SYSUT1 DD DSN=TPS.HUGOLIB(GEORGE) ,DISP=0LD

This places the member on the testing library. Once
tested to satisfaction, it can be copied onto the library
used in production, using the following JCL:

// EXEC PGM=IEBGENER

//SYSIN DD DUMMY

//SYSPRINT DD SYSOUT=P

//SYSUT1 DD DSN=TPS.HUGOLIB(GEORGE),DISP=SHR
//SYSUT2 DD DSN=TPS.HUGOPROD(GEORGE) ,DISP=0LD

59

Appendix D - Font and Character Access

D.1 Fonts

These are all the fonts and characters currently available
for use with the TEPB implementation of HUGO. Fonts
0 and 25 {Perma and Bedfcrd) are available in any size
from 5 point to 12.5 point and any combination of height
and width within these ranges. All other fonts are avail-
able in any size from 5 point to 25 point. But if the set
height is between 5 points and 9.9 points, the set width is
restricted to be beween 5 points and 12.5 points. And if
the set height is between 12.6 points and 25 points, the
set width is restricted to be between 12.5 points and 25
points. Any setsize specified in a HUGO program out-
side these ranges will be adjusted by HUGO to the clos-
est approximation within these ranges.

Perma (font 0)

This paragraph is sat in the Perma utility font which is normally used for
satting comments and for line numbering on “‘proof’’ copies of composed
text. Because of its non-standard size, it is not normally appropriate to use
the “*Pi”’ fonts in conjunction with this font. The characters available with
this font are:

ABCOEFGHIJKLMNOPQRSTUVWXYZ

abcdefghijkimnopgrstuvwxyz
12345678908 ¢&:;., " 71% = O/ -— - fTRAfHA
- ®F

Times (font 1)

This paragraph is set in the Times font which can be
used together with the “Pi” fonts to set most of the char-
acters that a user may need. The characters available in
this font are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz

12345678908¢ &:5.,”71%*() | —ic=EAE

Vsl % h%hEcCo T [1TE

Times Italic (font 2)

This paragraph is set in the Times Italic font which can
be used together with the “Pi” fonts to set most of the
characters that a user may need. The characters avail-
able in this font are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz

12345678908¢ &:;.,"?2! % *()/-—iee@& £
BHABUBHBBECo™] E

Times Bold (font 3)

This paragraph is set in the Times Bold font which can
be used together with the “Pi” fonts to set most of the
characters that a user may need. The characters avail-
able in this font are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnepgrstuvwxyz

12345678908¢&35.,°21% *()/—ieeE X
RARBRBYURAEEECo™ " ITi

Times Bold Italic (font 4)

This paragraph is set in the Times Bold Italic font
which can be used together with the “Pi” fonts to set
most of the characters that a user may need. The charac-
ters available in this font are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopqrstuvwzyz

12345678903¢&:.,”21%*() | —ieeEZLE
RHHBRUY Y YEcCan = [IFE.

Modern (font 3) i
This paragraph is set in the Mcdern font which can be
used together with the “Pi” fonts to set most of the charac-
ters that 2 user may need. The characters available in this
font are:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abedefghijkimnoparstuvwxyz

12345678908¢&:;., 1% *f——ic2EL

Ve%h % Th Y Yo % B ECo™ L.

Modern Italic (font 6)

This paragraph is set in the Modern Italic font which can be
used together with the “Pi” fonts to set most of the characters
that o user may need. The characiers available in this font are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrsturwzyz
12345678908¢ &:;., ?19%6*)l ——2EE
UHRASHSEC IR E

‘Modern Bold (font 7)

This paragraph is set in the Modern Bold font
which can be used together with the “Pi” fonts te
set most of the characters that a user may need.
The characters available in this font are:
ABCDEFGHIJKLMNOPQRSTUVYWXYZ
abedefghijkimnopgrstuvwxyz

1234567890%¢ &:..°219,* () / —ie=(ELE
1434543614183 14358 C o]41

Modern Bold Italic (font 8)

This paragraph is set in the Modern Bold Italic
font which can be used together with the “Pi”
fonts to set most of the characters that a user
may need. The characters available in this font
are:

ABCDEFGHIJKLMNQPQRSTUVYWXYZ
abcdefghijkimnopgrstuvwsys
12345678908¢ &3, 21%,% () | ——1ceeeEE

V343124 Yiba34a3skeCo™ 2T 111

Excelsior (font 9)

This paragraph is set in the Excelsior font which
can be used together with the “Pi” fonts to set
most of the characters that a user may need. The
characters available in this font are:’
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abedefghijkimnopgrstuvwxyz
1234567890%¢&:;.,°71%* () /—ica2EXE

%% %Y % B HEcCo it

et el

T ARG 1

Appendix D - Font and Character Access

Ezxcelsior Italic (font 10)
This paragraph is set in the Excelsior Italic font
which can be used together with the “Pi” fonts to set

most of the characters that @ user may need. The

characters available in this font are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abedefghijklmnopgrstuvwryz
1234567890%8¢ &:;., " !1%B*()/ weeE X
ARV LCCH™ T E.

Excelsior Bold {font 11)

This paragraph is set in the Excelsior Bold font
which can be used together with the “Pi” fonts
to set most of the characters that a user may
need. The characters available in this font are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcedeighijklmnopgrstuvwzyz

1234567890%¢ &:;.,"?1 % *()/ ——1c2=2CEXE

Yo% %% Y Yo % 3 25EcCan [1HE.

Excelsior Bold Italic (font 12)

This paragraph is set in the Excelsior Bold
Italic font which can be used together with the
““Pi’’ fonts to set most of the characters that a
user may need. The characiers available in
this font are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz
1234567890$¢&:;., " ?1%*()/—i1ccEE
%3656 % % 15 % % 3% EcCes" T [ITE.

Old-Helvetica {font 13)

This paragraph is set in the Old-Helvetica font which
can be used together with the “Pi” fonts to set most
of the characters that a user may need. The charac-
ters available in this font are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz
1234567890%¢&:;., " N%)/ —icc2EALE
YT Ve Ve VaHEGC =" 1T

Old-Helvetica italic (font 14)

This paragraph is set in the Old-Hsivetica Italic
font which can be used together with the “Pi”
fonts to set most of the characters that a user may
need. The characters availabie in this font are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz
12345678908¢&:;.,7?1% " ()/ —ice@E AL

%N B UKALBBECC<»" = []TE

Olid-Helvetica Boid {font 15)

This paragraph is set in the Old-Helvetica Bold
font which can be used together with the “P{”
fonts to set most of the characters that a user may
need. The characters available in this font are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghiikimnopqrstuvwxyz
12345678908 &, "% * ()/-—iceseEA

%% kY hBEGC" (114

Old-Heivetica Bold Itaiic (font 16)

This paragraph is set in the Old-Heivetica Boid
{talic font which can be used together with the
“Pj” fonts to set most of the characters that a
user may need. The characters available in this
font are:

ABCDEFGHIJKLMNOPQRSTUYWXYZ
abcdefghijkimnopqrstuvwxyz
1234567890$¢&:;.,2!% * () /——ieeELE

%38 %7% % % % B %EeCe»™ T [T

Helvetica (font 17)

This paragraph is set in the Helvetica font which can be
used together with the “Pi”" fonts to set most of the
characters that a user may need. The characters avail-
able in this font are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnoparstuvwxyz

1234567890%¢ & :;.," 21 % *(}/ —iea2E&A

YeY%ShTsta % sECCo T [11

Helvetica ltalic (font 18)

This paragraph is set in the Helvetica ltalic font which
can be used together with the “Pi”’ fonts to set most of
the characters that a user may need. The characters
available in this font are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz

12345678908¢&:;.,"?1% * ()/——iceee &£

%R BUBUBBECCT T [ITE.

Helvetica Boid (font 19)

This paragraph is set in the Helvetica Bold font
which can be used together with the “Pi”’ fonts to
set most of the characters that a user may need.
The characters available in this font are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopqgrstuvwxyz
12345678908¢&:;.,°21%* () /—ica2AE
%%%%%%%Vs%zggo"""[e

Helvetica Bold italic (font 19 sianted 12°)

This paragraph is set in the Helvetica Bold itaiic
font which can be used together with the “Fi”’
fonis to set most of the characters that a user may
need. The characters available in this font are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopqrstuvwxyz
12345678905¢&:;.,?1%* () / ——ice A
%HHBUKIKBEC T []1E.

Pi font 20

The following characters are those available in “Pi” font
20, which may be accessed while in one of the usual text
fonts:

X++=<2E2<>e===V

Pi font 21

The following characters are those available in “Pi” font
21, which may be accessed while in one of the usual text
fonts: .

©O®® A0

Appendix D - Font and Character Access

Pi font 22

The following characters are those available in “Pi” font
22, which may be accessed while in one of the usual text
fonts:

e71§s29@ #aoflee T %oll

Pi font 23

The following characters are those available in “Pi” font
23, which may be accessed while in one of the usual text
fonts:

o tf__/ﬁ@gq—-)’f‘...«.

Pi font 24

The following characters are those available in the
Greek “Pi” font, which may be accessed while in one of
the usual text fonts:
ABTAEZHOIKAMNEOQIIPEZTT®XYQ
afydelnfuAuvorposTvdXYwF

Bedford {font 25)

This paragraph is set in the Bedford mono-
width font. This font is usually used with
an “sb-ratio” of 60% and an “sb-step” of
“60% em” in order to give the effect of type-
written or computer-printed text. It is not
normally used with the “Pi” fonts. The char-
acters available in this font are:
ABCDEFGHIJKLMNOPQRSTUVWXYZ

abcdefghi jklmnopgrstuvwxyz
1234567890%¢&:;., 219 () /-—{1}+
=1“”-r_ﬂ#@ gc«»""" P -{]><.—/*:~fn

éeéda

61

TiMes SMALL-CAPS (FONT 26)

THIS PARAGRAPH IS SET IN THE TIMES SMALL-CAPS FONT
WHICH CAN BE USED TOGETHER WITH THE “P1” FONTS
TO SET MOST OF THE CHARACTERS THAT A USER MAY
NEED. THE CHARACTERS AVAILABLE IN THIS FONT ARE:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890$¢&:;-,”?!%‘(\2/——-1(3@@5
YhKThUBHBLHECo™ {175

MoDERN SMALL-CAPS (FONT 27)

THIS PARAGRAPH IS SET IN THE MODERN SMALL-CAPS FONT
WHICH CAN BE USED TOGETHER WITH THE “P1”7 FONTS TO SET
MOST OF THE CHARACTERS THAT A USER MAY NEED. THE
CHARACTERS AVAILABLE IN THIS FONT ARE:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
12345678908¢&:;.,?1 % *()f—iceE A

Vo % %4 T Y Yo % s % £cCo T ITE.

Hewverica SmawL-Cars (FONT 28)

THIS PARAGRAPH IS SET IN THE HeLvemica Smaw-Caps FONT
WHICH CAN BE USED TOGETHER WITH THE “‘P1”” FONTS TO SET MOST
OF THE CHARACTERS THAT A USER MAY NEED. THE CHARACTERS
AVAILABLE IN THIS FONT ARE:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ

12345678905¢ & 5.." 7! % () -—-iczEL

Ys%%Te %% B%BEcCo 11T

OLD-HELVETICA SMALL-CAPS (FONT 29)

THIS PARAGRAPH IS SET IN THE OLD-HELVETICA SMALL-CAPS
EONT WHICH CAN BE USED TOGETHER WITH THE “PI” FONTS
TO SET MOST OF THE CHARACTERS THAT A USER MAY NEED.
THE CHARACTERS AVAILABLE IN THIS FONT ARE:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ
12345678908¢&:;., " %")/ —icee(EA
YT Va oY sYeEGC =" [ITE.

Appendix D - Font and Character Access

D.2 Input Character Sequences

The following sections describe the predefined character
sequences that when set will be interpreted as single
actions (see Chapter 6.1). They access characters in four
font groups: the “standard” fonts, the “Pi” fonts, the
Gresk font, and the Bedford font. Standard characters
include those accessing such actions-as spacing and ‘tab-
bing”.

At the current time, all defined input sequences consist
of sither a single character or three characters, the
second one of which is the backspace character.

D.2.1 Standard Input Sequences

These input sequences can be used in any font which
contains the photocomposed characters they represent.
The following characters appear on input the same as
they do on output:
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijkimnopgrstuvwxyz

12345678908¢ &3.,"71%*()/-sCor(]

The sequences below on the left when input will produce
the characters or actions on the right:

S b Hoacoe s anna Ao s asd =

O . ®

AAE e e =

O<EFEUE e &

ACESN S e /5

e e Ys

S ¥

ST e A

TS R %

e S e e Y Ya

e P Fe)

344 SR R U %

NS s moios sin 060 6t on 8k A

B L o o maEs 60 B O %

b s naospn aocsonnsos £

CL8 o pocbnoosnascs 286 C

(<f «

T Sabosocooostasoatos »

e R {

B R P]

G R i

DE/AE SRR =

ol e e SR e :

D o arhdp aedomeEes s em space

VI s s ket crees e B en space

ttSEA FIES thin space
2.2 “Pi” Input Sequences

These input sequences can be used when in any font, and
will access the appropriate characters from one of the
fonts 20, 21, 22 or 23.

e I e e >
dab . =
pap RN +
A o TR -
Teet e N S s <
R R e e Sl B >
FeEr L e <

62

) S o b A Bis S 00

e

A

v
\\Qﬂ4@@w~@mm@ﬁmmmw4ooop@@@@<umuwVAW

D.2.3 Greek Characters

These input sequences can be used when in any font, and
will access the appropriate characters from the Greek
“Pi” font 24.

Al e e A
B ol B
(G I SRS e ip
Py I RS et A

Appendix D - Font and Character Access

D.2.4 Bedford Characters

These input sequences can be used when in any font, and
will access the appropriate characters from the Bedford
monowidth font 25. Note that some of these characters
are similar to characters in other fonts. However, they
are considered distinct characters by HUGO, with their
Qwn input sequences.

B RN s {
e }
BHaals o D N <

63

BEpl e o e Jee >
Bap i e T S e T +
BGeY L i s =
DO R S e e |
BAOINEN | Lo e <
Lor Lo e e U o N U 2
DENEG e =
o TTL e Eay e o
DR S b
bengh i e #
Beariis el Dt @
hebl e e fixed space
heis >
hABRERI e <
DEXE]
DB L e e -
DS /
HaVERTE W L e -
DI el S H
LT RS RE ~
R L 0
DG PN s e T *
baae e o T é
bihe B e it e e
[or T e SR TR é
DA e e L U] a
AU e R e o back-space

_ D.2.5 Accessing Other Characters

Some characters in the fonts listed in this appendix can-
not be accessed by any of the above input sequences.
These other characters can be accessed by use of the
internal codes listed in section D.3 together with either
the set-absolute or escape-char facilities. Or they can
be accessed by setting the following input sequences
which, although they cannot be directly input on most
input devices, can be generated in a HUGO program by
use of the ebcdic or bin operators. The sequences all
consist of a single input character, whose “ebcdic” num-
ber is given here in lieu of the input character itself.

GRF T Rl e ~ {lower case)
Q0TS 0 L il ~ (upper case)
00N o * (lower case)

101 e " (upper case)
02 e " (lower case)

13T R e " (upper case)
he 7. e “ (lower case)

OsSPEm el s e e " (upper case)
e S TRl :.(lower case)

TR (upper case)
R e : (lower case)
AS oncacneakes s ot e (upper case)
L e * (lower case)

WA s s (upper case)
BESEISN vobs - e ” (lower case)

1) b sn o no 0B pE an Sens 5 (upper case)
(00 S NS SRR S 1

Appendix D - Font and Characrer Access

D.3 Internal Character Codes

The following tables detail the internal character
representations used on the phototypesetter at TEPB.
Each character has a numeric code in the range 1 to
128. The code for any character can be found by sum-
ming the numbers at the front of the row and at the top
of the column in which the character appears.

Blank or missing entries usually indicate that there is no
character in that position. The three exceptions to this
rule are:
character 90 in font 0 is a fixed-width space of 60%
em;
character 96 in font 25 is a fixed-width space of 60%
em; and
character 128 in font 25 is a fixed-width space of -
60% =m (and so can be used as a “backspace” in the
monowidth font).

Most fonts have the same internal layout, which is
detailed in section D.3.2. The other sections detail the
non-standard iayouts.

D.3.1 Perma Utility (foat 0)

G D I3 S SR TR SO
0 A B G Dl SEREERIER G H
i0 Jr RKE L iR TERRERG S URE S S
20 3w v w X ¥ T a b ¢
30, 4 s £ g h i j X I m
40 n o P q r s t u Yy ow
SOREE (SN B, R o T T 5 7
60 8 9 o s ¢ & ;
70 S 2 ? 1 g5 © (N -
80 - #F & f A M = + =
90

D.3.2 Standard Fonts (fonts 1 te 19 and 26 to 29)

(=]

10 J
20 T
30 d
40 n
50 «x
60 8
708 ==
80 — -
90 s il
TOCRE i {
110N S

O 0 0 R P
VO ND W
~ea 00 S ZOw
e e NOYOT N
DNV - B Ve I ® JEN
N < — o W oo
g H o - o

B %

N

8
PE R R e 2O e

W

®

R A R W O MWL
,mm/\..

4+

D.3.3 Pi foat 20
G 23
0 SO
10 > = = =
D.3.4 Pi font 21
QR 9 g
0 © © ®
10 A NS
D.3.5 Pi font 22
ORI 3
0 o T
160 o | }
20 !/
D.3.6 Pi font 23
GO 3
0 o 7 "
10 (1] g = -
20
D.3.7 Greek Pi (font 24)
O 1D S 3
0 A B T
10 K A M N
20 T & X V¥
SOREEN i gy
4 x* p oo s
50 f

O w »)

'S

ERNE N < T 1) I PR

D.3.8 Bedford Monowidth (font

10
20
30
40
50
60
70
80
90
100
110
120

0

RN T T~ B o W L]

cWwW O MR P

d

v

H o ONYY O

o o= 65 0 00 E R O W

o &

¥ AR e NN M Z U N

o |

<IN W

A%

O

O
-~ e > R O I wm

® R WO O MW

c@® Vv

~

[\

9k W N «[] o 0

b e e N YO o

~

IN <

=4

P S I - B« » N |

O oE RO

I~ o

D]

v oo

€ v o 04 D

M < oo oo

) — e~ e

64

£ O o k3 e \O

NE B8 0 nH W

Appendix E - Sample Program

/ This program was used to typeset this manual in the format in which
you are now reading it.
- include ROMAN

/ to inciude the function defined in Chapter 4.4.1

function count starts-as O with a, b

local p
loop

assign a index b to p

exit-if p gt length(a)

add 1 to count

assign a start-at p plus 1 to a
end-loop

global groupl starts-as ‘N’

giobal in-preface-page starts-as ‘Y’
global page-number starts-as O

global preface-page-number starts-as O

list toc
global toc-size starts-as O
define enter-toc with head., level

index-item level * ‘m<s’ : head
add 1 to toc-size
assign index-item : ‘*’ : page-number to toc(toc-size)
end-index
at-end

local n starts-as 1, h, p, 1
assign ‘Y’ to in-preface-page
finish-body
column O
head width 6.5 in
setsize 15 on 18 bold
centre nohyph
set ‘Table of Contents’ =
columns 0, 3.5 in
loop
exit-if n gt toc-size
assign toc(n) to h
assign 0 to 1
assign 1 to p
loop
exit-if p plus 2 gt iength(h)
exit-if h(p,3) isnt ‘m<s’
add 1 to 1
add 3 to p
end-loop
ir I gz 0
tag
else
text
end-if
justify-with ‘.<.’, 1 en
assign h index ‘*’ to p
left-indent O, (1 plus 2) ems
right-indent 2 ems for-ail
set h(l,p minus 1)
tag
no-para-space
setsize 1 em on O
flush-right
set h start-at p plus 1
add 1 ton
end-lo0p

fuf irets
set ‘*’
fuf sl & ‘*p °

65

Appendix E - Sample Program

text
iuf s1 & “‘*pc ’

text

para-space 2 pt
fuf ‘**pe °

text block
para-space 12 pt
juf sl & ‘*h0 * & (chars called head)
column O
reference-head chapter
quad 1 em
head setsize 25 on 30 bold
width 6.5 in
centre nohyph
set head
columns 0, 3.5 in
iuf sl & *‘*hl *° & (chars called head)
assign ‘N° to in-preface-page
finish-body
column O
reference-head chapter
quad 1 em
reference-head chapter
width 6.5 in
italic flush-left
set head
enter-toc head, O
head
setsize 15 on 18 bold
width 8.5 in
centre nohyph
set head
columns O, 3.5 in
juf sl & **h2 ’ & (chars called head)
finish-body
enter-toc head, 1
head bold
nohyph
set head
juf sl & *‘*h3 ’ & (chars called head)
enter-toc head, count{head(l,head index °* * minus 1),°‘.")
head para-space 1 ex bold
nohyph
set head
iuf s1 & ‘*h4 °
head para-space 1 ex bold
nohyph
iuf sl & ‘*preface’
text para-space 2 ex
iuf s1 & ‘*sl’
text no-para-space
juf sl & **li ’ & within(‘ ’) & ‘- '
sub-para
indent 1 em, 2 ems
set ‘-’
quad-to left-indent(2)
juf 81 & **1i " &
within(® ') & (‘(' & without(*)’) & ‘)’ called a) & *°
sub-para
indent 1 em, 3 ems
set a
quad-to left-indent(2)
fuf 81 & T4
sub-para
indent 1 em, 2 ems
iuf s1 & ‘*stl’
text
table
t 0, 1.4 in
t 0, 3 in drop-align indent 1.5 in, .5 in quad-out
end-table
iuf sl & ‘°*st2’

66

Appendix E - Sample Program

iuf

iuf

iuf

iuf
iuf

iuf

iuf

iuf

iuaf

iuf

juf

iuf

iuf

ijuf
iuf

text
table width 1.4 in
t O flush-left-with ‘.<.’, 1 thin
t 1.6 in flush-left
end-table
sl & ‘*st3”
text block para-space 1 ex setsize 10 on 12
table width .25 in centre
0, .4 in flush-right times 1 em
.5 in
.75 in
1 in
1.25 in
1.5 in
1.75 in
2 in
2.25 in
2.5 in
2.75 in
end-table
sl & ‘*ti1 °
chunk
sl & **ti’' & digits & '’
tab
sl & (‘*el’ ! ‘*et’ & digits)
sl & (‘*sgl’ ! ‘*sg3")
text
widow 4 flush-left
sb-ratio 40% nohyph
assign ‘Y’ to groupl
sl & ‘*sg2’
tag
widow 4 flush-left
font 25, 7.5 on 9
sb-ratio width-of (‘m’) div-by 1 em nohyph
assign ‘Y’ to groupl
sl & “*sg4’
text block
widow 4 flush-left
width 1.4 in
indent 0, 1 em
division 0, 1.6 in
assign ‘T" to groupl
sl & *‘*sg5’
column 1 in
text width 4.5 in
widow 4 flush-left
font 25, 7.5 on 9
sb-ratio width-of (‘m’) div-by 1 em no-hyph
assign ‘Y’ to groupl
sl & ‘*eg’ & digizts
assign ‘N’ to groupl
sl & within(‘ ’) called s
if groupl is ‘'Y’
sub-para
quad length(s) ens
eilse-if groupl is ‘T~
tab
else
spaceband
end-if
**hi0."’
hyph times 1 em break
sshi 2w
italic medium
sepil.> 1 “*hid.°
font 17, 1 em
nohyph no-break

P B s B e s o N AN A

ezl
‘sfudge’ & (within(‘-0123456788.") called f)

67

Appendix E - Sample Program

fudge f em
juf ‘*font’ & (1 digit & digits called)
& *," & (1 digit & within(digit-string:‘.’) called sh)
% ', & {1 digit & within(digit-string:‘.’) called sw)
save it
font f,sh,sw
iuf ‘*restore’
restore it
iuf ‘°*slant’ & (1 digit & digits called s)
slant s
juf ‘*baseline’ & (within(‘-0123456789.°) called b) & ‘*’
baseline b ex
iuf ‘*time’
set time-of-day
juf ‘*date’
set date
iuf ‘*julian’
set julian-date
iuf ‘*e’ & (digits called n) & ‘*’
set n ebcdic
iuf **jr’ flush-right
juf ‘*qw’ & (without(‘,’) called ¢) & *,’ & (digits called n) & ‘*’
quad-with ¢, n% ems
juf ‘®*in’ & (digits called m) & *,’ & (digits called n) & ‘" &
(digits called o) & ‘,’ & (digits called p) & **’
left-indent m pt, n pt
right-indent o pt, p pt
juf **far’ foot-ref
fuf, “Sfnd *
foot-note
para-space 2 ex
setsize 8 on 9
juf ‘®*un’ underline
iuf **nu’ no-underline
iuf **f1’ finish-line
iuf **qr’ quad-with-rule
iuf ‘*HE’
figure 20 pt
fig-rule 0, -5 pt, 5 pt, 5 pt
fig-rule 5 pt, -3 pt, 10 pt, 1 pt
fig-rule 15 pt, -3 pt, 5 pt, 5 pt
end-figure
iuf *‘*box’
rule -2 pt, -1 ex, width plus 4 pt. 1 pt
vertical-rule -3 pt, 1 pt, -1 ex, 3 pt
vertical-rule width plus 2 pt, 1 pt, -1 ex, 3 pt
end-para-rule -2 pt, 2 pt, width plus 4 pt, 1 pt
iuf ‘*charlist’ & (digits called m) & *,’ & (digits called n) & ‘*’
set (‘ABCDEFGHIJKLMNOPQRSTUVYXYZabcdefghijklmnopqrstuvwxyz‘:
«12345678908¢8&:; ., T21%°()/-=»:
IOGebcdic:120ebcdic:81ebcdic:SZebcdic:83ebcdic:84ebcdic:
70ebcdic:7lebcdic:72ebedic: 73ebedic:85ebedic: 86ebedic:
87ebcdic:88ebcdic:89ebcdic: 121ebedic: ‘gCe»’
1}29bcdic:113ebcdic:114ebcdic:115ebcdic:116ebcdic:117ebcdic:
118ebcdic:119ebedic: *[]”:
32ebedic:33ebedic:34ebcdic: 35ebedic: 36ebedic:37ebedic:
3Bebcdic:39ebcdic:40ebcdic:48ebcdic:49eb¢dic:SOebcdic:
Slebcdic:52ebcdic:53ebcdic:54ebcdic:55ebcdic:56ebcdic)
{m,n)
juf ‘*sn’ & (digits called n) & **’
assign n minus 1 to page-number
juf ‘*° & without(*‘ .°*’) called it
output it : ‘ on line ’ : line
save status
font 19, 1 em
set it
restore status
initially

width 3 in
para-space 5 pt
times 9 on 10
columns 0, 3.5 in

68

Appendix E - Sample Program

body-space 1 pica

first-layout page
layout page 8.5 in by 11 in

width 8.5 iam italic
at 0, O quad-with-rule set ‘ cut here’
width 6.5 in
at 1 in, .5 in flush-right
if in-preface-page is ‘Y’
add 1 to preface-page-number
set roman-numeral(preface-page-number)
else
add 1 to page-number
roman set page-number italic
end-if
at 1 in, 1lin body 9 in
at 1 in, .5 in use-first chapter
width 8.5 in
at 0, 10.75 in set line

end - HUGO

69

70

Index

account A4;C2 <carried head name> 8.3.2

add 341 cat 2.1;2.1.3,44.1, B.
<add statement> 3123 center B.1
aipha B.1 center-align B.1
aiphas 11.4.2; B.1 centre 7.2:B41
aipha-string 2.3.3 centre-align 8.4.3; B.1
and 2201 14:22 1 11417 B 1 char B.1
any-ex-notes 9.2.5 <character> 1.1.2
area-count 9.5.2 <character format statement> 6:1.2,6:1:4,62.1;
area-size 95.2 6.2.2,6.2.3,6.2.4,6.3,10.1.1, 10.3, A.2; 3
assign 34 char-count 121
<assignment statement> 3153 char-in-page 1251
at 9.1.2;7.1,8.3.3,9.2.1,9.4,9.5.1, 10.4 chars 11.4.2; B.1
at-end 11.3 chars-input 12.1
<at-end section> 18143552 char-string 2:3.3
at-job-end S22, A6, €2 chunk 8.4.2:8,8.2,8.2.1,8.4.1,8.8
<at-job-end section> 52.2:52 cm 6.4.1; B.1
at-job-start Solenie s column B.1
<at-job-start section> 5:2.2:52 <column position> 9.3.3;9.3.1,9.3.2
at-page-end 52.2;€2 coiumns statement: 9.3.1; builtin: 9.5.1; 8.6, 9.2.2,
<at-page-end section> S22 9.2.3,9.3.2,B.1
at-page-start 52.2; €2 <conditional statement> 32583
<at-page-start section> 51225502 <constant> el 201
at-start 112 continued-head 8.3.2;8,8.2.3,10.5
<at-start section> 112552 cpu-time A5
attn Al cut-line 330
<attribute set name>) 8.1.2 date 122
at-y 9.5.1 <declaration section> 4:5.1
a0 X 9.5.3 define 4.3;4.1.1
ail 9.5.3 <digit> ol 2R i
a2 953 digit B.1
a3 9.5.3 digits 11.4.2;11.44,B.1
a4 9.5.3 * digit-string 2:373
as 953 discretionary 7.4
a6 9.53 display-head 8.3.1
a7 9.53 div B.1
a8 983 div-by 21013 Byl
baseline statement: 6.2.3; buiitin: 6.4.2; 8.6 division 8.8;8,8.2,8.2.1
bedford statement: 6.2.1; builtin: 6.4.2 document-line A€ 3
bin A.1;B.1,D.2.5 drop-align 8.4.3
bks 24343 ebcdic A.1; B, D25
block 822 el 1143
body 9.2.1;8.5.2,8.7,9.1.2,9.2,9.2.4,9.2.5,9.5.1 else 32
body-space 9.2.3 else-if 3.2
bold statement: 6.2.2; builtin: 6.4.2; 6.1.3 em B.1
<Boolean built-in function> 92:5 ems 6.4.1; B.1
<Boolean built-in function call> 2.3.2,34.1,6.4.2, en B.1
77,822, A.6; 2.2 end-figure 10.3
<Boolean expression> 2:2:239 8395303 end-hugo 5
<Boolean factor> 2212220223 414114 end-if 3:2
<Boolean term> 22 end-index 9.4
bottom-align 8.4.3 end-loop 353
botiom-previous 8.4.3 end-para-ruie 10.5
break statement: 7.4; builtin: 7.7 end-segment 5.3
break-here 7.4 end-table 8.4.1
<built-in function call> 2.3.1,2.3.3,34.1, 343, english statement: 7.5; builtin: 7.7
4.1.4,442,64.2,7.7,82.4,844,9.4,95.1, ens 6.4.1; B.1
9.5.2,9.5.3,10.6,12.1,12.2, A1, A2, A3, A4, entry 4.1.1,4.1.3,4.2,4.3;53
ASA T2 eof 3.4.1
by B.1 eq 2.2.3; B:-1
called B.1 error A.6
carried-head $.3.2:82.3,105 escape-char A.2; D25

Index

even

evenup
evenup-step

ex

exceisior

exit-if

ex-note
ex-note~-body
ex-note-columnn
ex-note-columns
ex-noie-head
ex-note-lineup
ex-note-ref
<expression>

3.4.3,3.4.4,
44.2,6.1.2,
st TRk 7o
8.6,8.8,9.1.1

152

S|
1.3,
4,75

2:2.3:8°1

9.2.2

statement: 9.2.2; builtin: 9.5.1
6.4.1;10.1.1, B.1

statement: 6.2.1; builtin: 6.4.2

2529
2l ,4 1.4,4.2,4.3,
235630642, 7°1,

2:
, 4.
6.
7 1 8:2.2,8.2.3,84.1,

A%
23
6, 7

155912 9.2.1, 91292.9.2.3,9.2.4,

9.2.5,9.3.2,9.3.3,9.4,9.5.2,10.1.1, 10.1.2, 10.2,
10.3, 10.4, 10.5, 11.4, 11.4.2,11.4.3, 11.5, A.L,

<factor>

fig-rule

figure

film-length
finally

<finally section>
finish

A2,A4, A6
2.1,4.14,64.1,9.5.2

S2.0: 52
9.2.1;9.2.2,9.2.4,11.3

finish-body 9.2.1;9.2.2,9.2.4
finish-column 9.2.1
finish-iine FAlN7E30)
first-iayout 9530
<first-layout section> 94 :3:351
floor 231
fiush-left 21735
flush-feft-with 7.3.2;10.2
flush-left-with-ruie 10.2
flush-right 72
followed-by 11.44
font statement: 6.2.1; buiitin: 6.4.2
foot-balance 8.5.2
foot-bottom 8.5.2
foot-head 8.5.1
foot-lineup 8.5.2
footnote 8.5.1
footnote-count 9.5.2
foot-ref 8.5.1; 8.6
for 7.6:7.9
for-ail 7.6
force-justify 72
french statement: 7.5; builtin: 7.7
fudge statement: 6.2.3; builtin: 6.4.2
function 42:4.1.1,84.1
<function call> 2.1,42
<function declaration section> 4.2;4
<function name> 1.22:201.479
galiey 9.2.4
ge 2.2.3;B.1
get 3.43;3.44,94,C2
global 4.1.1
<global declaration section> 4.1.1;4

<global variable>

1.2.2;4.1.1,114

<global variable declaration> 4.1.1
gt 2:2.3:B.1
head 83.1-823

71

helvetica statement: 6.2.1; builtin: 6.4.2
- <HUGQO program> SH30-5
hyph statement: 7.5; builtin: 7.7
hyphen statement: 7.5; builtin: 7.7
hyph-fill statement: 7.5; builtin: 7.7
hyph-margins 7/
<identifier> 12: 122 743, 8. 1.2/ 8° 39 8813 30 101
it 32
if-you-find 11.1;6.1.2,6.1.3,8.44,11.2, i1.4,
11.4.3,11.4.4,11.4.5,11.4.7, 11.5, 12.1, B.1
<if-you-find section> 13l
in B.1
inch 1.2.3,B.1
inches 6.4.1;1.2.3, B.1
indent B.1
<indentation margins> 7.6
index 201:2.1:3, Bt}
index-item . 94;C.3
index-x 9.4
index-y 9.4
initially $2.1: 82
<initially section> 521352
input 3.4.1;3.43
input-volume . A.3;C3
inter-para 8.3.1
into-column 9:3.2: 951
is 2.2.2;4.4.1,B.1
is-in 4.1.4;B.1
isnt 2293
isnt-in : 4.1.4;B.1
italic statement: 6.2.2; builtin: 6.4.2; 6.1.3
iuf B.1
job A4;C3
job-name A4
job-number A4
julian-date 122
justify 7/
justity-center B.1
justify-centre 72: BY
justify-right 7.2
justify-vertically 922
justify-with 7323105
justify-with-rule 10.2
kiil-all-heads 8.3.2
kill-head 8.3.2
ladder i)
landscape 919,53
layout SRt
layout-depth 0155
<layout name> 9181100103
<layout section> 9.1 15 5.1
<layout shape> SLil
layout-width 9.5.1
lc 23k
lc-alpha B.1
lc-alphas 11.4.2; B.1
lc-alpha-string 233
le 2.2:3: B
leading 323
leave . 8.2.1,8.3.1,8.3.2,8.3.3,8.4.2,8.5.1,8.6,8.7;
8,8.1.1

left-for Ul
left-indent statement: 7.6; builtin: 7.7; B.1
length 2.3.1
<letter> 152

s

Index
lex-eq B.1
lex-ge 222181
lex-gt 22.2:B.1
lex-le 222384
lex-it 2.22;B.1
lex-ne B.1
line 1201, A3
line-count 12:%
<line format statement> TSI ok Tl e TG
7.5,7.6,10.2
line-up 9.3.2;8.25
list 451:3C13
<list declaration section> 4.1.3: 4
<list name> 1.2.2:4.1.3,4.14,11.4
<list name declaration> 4.1.3
list-size 414
<list variable> 4.1.3;1.2.2,11.4
literally 4.1.1,4.12
local 4.1.2

<local declaration group> 41.2;4.2,43,5.2.1,
$9291 6 131 9N B 11.2, 113

<local variable> 1.2.2:4.1.2,42,114
<local variable declaration> 4.1.2
long 9.2.1;9.2.4
loop 33
Ipos 11.4.3
it 2.2.3: B
many 1144
max-column 8.4.4
max-depth 9.5.1
maximum-expansion 922
max-width 9.5.1
medium statement: 6.2.2; builtin: 6.4.2
min-para 8122
minus 25105103 SR
min-word 15
mm 6.4.1; B.1
modern) statement: 6.2.1; builtin: 6.4.2
modulo Dol 3N B
mul B.1
mul-by 2:1, 221381
multi-column 9.5.1
muiti-columns 9.3.2;8.6,9.2.2,9.2.3
ne 22381
new-body 9.2.1
next-layout 9.1.3:9:1:1,9:2.5
next-iine 11.4.5
no-break : 7.4
no-escape-char A
no-evenup 9.2.2
no-ex-note-head 8.7
no-ex-note-lineup 9.2.5
no-ex-note-ref 8.7
no-foot-balance 8.5.2
no-foot-bottom 8.5.2
no-foot-head 8.5.1
no-foot-lineup 8.5.2
nohyph 7S
no-maximum-expansion 9.2.2
no-next-line 11.4.5
no-para-space 8.2.3;8.2.4
normai-case statement: 6.2.4; builtin: 6.4.2
normalize-page 9.2.1
no-shift 6.1.4
no-side-line [10.1.2

72
no-stick-hyphens 75
no-suffix-space 8.2.3;8.24
not 235
not-followed-by 11.4.4
no-underline 10.1.1
number statement: 4.4.1; builtin: 4.4.2; 4.4
<numeric constant> 1.1.2
odd 2.2:3;B.1
of 2.1;2.1.3,B.1
oid-heivetica statement: 6.2.1; builtin: 6.4.2
on 8.2.3;8.24,9.1.2
only 6.1.3
optional 1144
or 2.2,11.4;2.2.1,11.4.1,11.47,8.1
output 3.4.2;44.1
<output statement> 3423
output-volume A3
overfill 8.6
p B.1
pack A.l;B.1
page-count 12:159.2.1
<page format statement> 8.3.3,8.5.2,8.6,9.1.2,

9.1.3,9.2.1,9.2.2,9.2.3,9.2.4,9.3.1,9.3.2, 9.4,

10.4; 3

<page format statement> 9.2.5
<paragraph format statement> §.1.2,8.2.1,8.2.2,
3.2.3,8.3.2,8.42,84.3,85.1,86,87,838,

10.1.2,10.5: 3

<paragraph start statement> 8.3.1,8.3.2,8.3.3,
8.5.1,8.6;3

<paragraph start statement> 8.7
<parameter declaration> 4.2;4.3
para-space statement: 3.2.3; builtin: 8.2.4; 9.1.2
<pattern built-in function call> 11.4.2,11.43,

11.4.4,11.45;11.4

<pattern expression> 11.4;11.1,11.4.4, 11.45

<pattern factor> 11.4,11.4.2
<pattern subexpression> 11.4
<pattern term> 11.4
percent 21213 B
perma - statement: 6.2.1; builtin: 6.4.2
pica B.1
picas 6.4.1; B.1
pius 2.1 208 B
point B.1
points 6.4.1; B.1
portrait 9.1.1: 953
pp 64.1;B.1
<program section> S 53
pt B.1
pts B.1
put 344;A.1,C2
<put statement> 3.44;3
guad 6.3
quad-out 7.3.2;6.3
quad-to 6.3
quad-with 7.3.2;6.3,10.2
quad-with-rule 10.2; 6.3
<quoted constant> 1.1.2
reference-head 8.3.3;8
<reference head name> 8.3.3
<repetitive statement> 3333
rescan 15 C3
<rescan statement> 11.5;3

reserve 9.2.1

Index

restore 8.1.2
restore-defauits 8.1.2
right-for 7.7
right-indent statement: 7.6; builtin: 7.7
roman statement: 6.2.2; builtin: 6.4.2
rpos 11.4.3
rule 10.4, 16.5
rule-height 10.6
ruie-posn 10.6
rule-specs 10.2; 10.6
save 8.1.2
save-defaults 8.1.2;8.2.1
sb-ratio statement: 7.3.1; builtin: 7.7; 7.4
sb-step statement: 7.3.1; builtin: 7.7
seconds 122
<segment> 53251
segment 53
set 6.1.2;4.4.1,6.1,6.1.1
set-absoiute A2: D25
setsize 6.2:1;:6.2.3,82.3
<set-up section> 5i2::504
setwidth 7.4
shift-down 6.14
shift-up 6.1.4
side-line 10.1.2; 1G.5
side-line-vary 16.1.2; 10.5
sidenote 8.6
side-ref 8.6
sl 1143
slant statement: 6.2.3; buiitin: 6.4:2
small-caps statement: 6.2.4; builtin: 6.4.2
source-line A7
spaceband 7.3.1
space-block 8.2.3
start-at 2atz 2a1e3uB
starts-as 4.1.1,4.1.2,4.2

<statement> 3,A4,A6;3.2,33,42,43.5.2.1,

522, 6.1.3,84.1,9.1.1,9.4,11.1,11.2, 11.3
static 412,42
stick-hyphens 7.5
stop 54;C.2
<stop statement> 54;3
string statement: 4.4.1; builtin: 4.4.2; 4.4
sub-body 92.1;9.2.3
sub-entry 8.4.2
<subexpression> 2.1, Al
<subfactor> 23,641, A1;952
sub-para 8.2.1;8,8.2,8.2.2
<subscription> 2:4
<subterm> 2
suffix-space statement: 8.2.3; builtin: 8.2.4;9.1.2
t B.1
tab statement: 8.4.2; builtin: 2.3.3; 8.8
table 8.4.1
<table column setup> 8.4.1
<table definition statement> 8.4.1;3
tabular-column 8.44
tabular-count 8.44

573
tabular-position 8.4.4
tag 8.3.1
tcol 8.4.1:4.1.2,8.4.2,B.1
<term> 2.1;A.1
text 8.3.1
th-elem 4.1.4;B.1
then 35:;1.2.3. B.1
<then statement> 3:5:3
thin F3 2584
thins 6.4.1; B.1
time~-of-day 122
times statement: 6.2.1; builtin: 6.4.2
to 351
to-global 114;4.1.1,11.4.7,B.1
to-local e L !
to-lpos 11.4.3
top-align 8.4.3
top-flush 922
top-previous 8.4.3
to-rpos 1143
totai-set 12.1
turn-over 70l
<type> 44.1;4.1.1,41.2,4.1.3,42
uc 2.3.1
uc-alpha B.1
uc-alphas 11.4.2; B.1
uc-alpha-string 233
unbin A.l
unblock 8.2.2
undertine . 10.1.1
underline-height 10.6
underiine-posn 10.6
underline-specs 10.1.1; 10.6
unpack Al
up-to 11.4.4
use-first 8.3.3
use-iast 8.3.3
user-code 65.1.3
<user-code section> 613501
<user declaration section> 4.3;4
<user statement> 4.3;3
<user statement name> 4.3
<variable> 1292 1838
vari-space 731
verify 2222 B0
verticai-rule 10.5
vertical-rule-vary 10.5
warning Ab
widow 8.2.2
width statement: 7.1; builtin: 7.7; 7.4
width-of 6.4.2
with 42,43,933
within 11.4.2;11.44,B.1
without 11.4.2; 11.4.4, B.1
X B.1
X-posn 952
y-posn 9.5.2; B.1

