
BML: The Smallest Markup Language
There's been a trend to simplifying markup languages,
initiated by a not necessarily perception that SGML was
too complex, and by the questionable claim that no users
want to look at the raw markup. XML was the first step
in this trend. JSON and MicroXML are further attempts
to simplify things.

A new markup language called BML (Basic Markup
Language) has been created strictly as an aid in
developing the Bobbee programming language, and which
is minimalistic in all respects.

BML can be considered an example of how simple a
markup language can become, while remaining useful.

The BML package, implemented using the Bobbee
language, supports both rule-based and procedural
processing of BML data, and supports both serial and
tree-based rule processing.

• BML has only one kind of node that serves as either
markup or data, determined by the user.

• There is one rule type: “bmlItem” for serial
processing.

• There is one rule type: “bmlNode” for tree
processing.

• Entering BML markup by hand can be inconvenient,
requiring escaping of all spaces and parentheses that
are data, amongst other things.

These limitations are appropriate for machine-to-machine
communication, with only the occasional intervention by
human and similar-type beings.

An Example of Using BML
(p (text: (Each\ node:)))
(list
 (item (text: (is\ surrounded\ in\ parentheses,)))
 (item (text: (consists\ of\ a\ text\ sequence,\ and)))
 (item (text: (has\ zero\ or\ more\ nested\ nodes.)))
)

The designer of a particular markup notation determines
which nodes are markup labels and which are data, in the
same way that they determine the import of any element
or data in XML. In this example, the subcomponents of
the “text:” tag are text, and everything else is markup.

Although BML input superficially looks like Lisp s-
expressions, it is textual markup and data. Don’t be
fooled by the parentheses. On the other hand, yes, BML
was inspired, in part, by Lisp, which is itself a markup
language.

A Bobbee Program That Processes That Data
program bmltree;

choose bmlNode ("p") {
 print ("<P>"); processChildren; println ("</P>");
}
choose bmlNode ("list") {
 print (""); processChildren; println ("");
}
choose bmlNode ("item") {
 print ("<P>"); processChildren; println ("</P>");
}
choose bmlNode ("text:") {
 print (* [0].textValue);
}

The Bobbee Program's Output

The program translates BML input into a simple
XML form:
<P>Each node:</P>
is surrounded in parentheses,
consists of a text sequence, and
has zero or more nested nodes.

About The Bobbee BML Processing Program
The example BML program processes BML input as
follows:

• A program is prefixed with a declaration of the
optional features it uses. In this case, program
bmltree; says use the “BML tree” package.

• Markup language processing rules consist of the
keyword choose, followed by the name of type chosen
by the rule (in the example it's “bmlNode”) followed
by an optional condition and the processing done when
the rule is selected.

• processChildren calls the rules needed to process the
components of the recognized markup node.

• The “*” identifies the currently selected markup
node, which when doing "tree" processing can be
indexed to select its children and their properties
without having to have rules to do the job.

How this comes about is defined entirely using the
Bobbee language itself. The language mechanisms are
defined below and can be used to define any markup
language, and any markup language processing a user
wishes. At present, there are packages for SGML, XML,
JSON, MicroXML and BML processing available, but
others can be added.

How BML Tree Processing Is Defined
This declaration defines the meaning of a “bmlNode”
rule:
def choose bmlNode (BmlNode) choose (*.textValue)
 default {print ("(" + *.textValue); processChildren;
 print (")");}

• choose bmlNode is selected when a “BmlNode” node
type is encountered.

• If one or more names are specified in a choose rule
then they are compared to the “textValue” of the
“BmlNode”.

• The default part defines the default behaviour if no
rule is specified. In this case it just outputs the
node with its origin markup.

How Bobbee Is Told What To Do With BML Input

This is the bmltree.bjp file, which defines BML tree
processing. It declares that BML parsing is done by the
bj.bml.* package with help from the
bj.patternmatching.* package.
Display a message when compiling:
"Use BML tree profile.";

Import what's needed by these declarations or the user:
import bj.bml.*, bj.patternmatching.*;

Define the "choose" rules, what's used as the selecting
"name", and the rule's default behaviour, if any:
def choose bmlNode (BmlNode) choose (*.textValue)
 default {print ("(" + *.textValue); processChildren;
 print (")");}

Define the different ways that markup processing can be
initiated, especially what kinds of inputs are supported:
def parseBml (in : CharSequence) : void :-
 bmlNode (BmlTreeParser.parse (in));

def parseBml (in : InputStream) : void :-
 bmlNode (BmlTreeParser.parse (in));

def parseBml (source : MatchableInput) : void :-
 bmlNode (BmlTreeParser.parse (source));

def parseBml (in : Readable) : void :-
 bmlNode (BmlTreeParser.parse (in));

def parseBml (data : String) : void :-
 bmlNode (BmlTreeParser.parse (data));

def parseBmlFile (fileName : String) : void :-
 bmlNode (BmlTreeParser.parseFile (fileName));

