Block Bros.
Data Centre

BB-HUGO

0 Introduction

This short report describes the re-implementation of the HUGO language for text composition at Block
Brothers Data Centre as of May 1981. It is described in terms of the HUGO Language Manual and
Report produced at the Text Editing and Photocomposition Branch of the federal Queen’s Printers in
August 1980. The sections of this report correspond to the chapters of that manual, and where a chapter
or feature is not mentioned it can be assumed to be implemented as described in the manual. References
of the form (in 1.1.2) are to the chapters and sections of the HUGO manual.

The current implementation commenced in February 1981 and is still in progress. A different method of
implementation has been used in this re-implementation. The HUGO program is translated directly into
PL/L This affords the advantages of greater speed and smaller size in running HUGO programs, and
eliminates the need to re-compile programs at each use. This implementation can also support a variety
of output devices. At present, a HUGO program can, by appropriate parameterization at run-time,
produce output for a IIl VideoComp 570 phototypesetter, and for an IBM 3800 printer with both normal
and “side-ways” character sets.

This is as yet only a partial implementation of HUGO. The major areas in which features are missing
are support of various types of paragraphs, hyphenation of words to determine line breaks, and creation
of source program segments. (HUGO programs never got big enough for this latter feature to be useful
anyway.) Most other features not yet available were originally implemented to satisfy specific
installation needs, such as accounting support, and are not very high on the requirements list for this
implementation.

A number of new facilities and extensions of existing facilities have been included in the implemention
when they were considered useful. In addition a number of features described in the manual, but never
implemented in the original version of HUGO, have been included, such as the use of arbitrary strings
with USER-CODES.

1 Basic Concepts

Numbers are stored internally either as whole numbers, with no fractional part, or scaled by a factor of
65536. While this allows more precision than the scaling by 1000 of the original implementation, and
allows different devices to be more easily described, it does slightly change the results of certain
language functions, and reduces the maximum values that may be stored in numbers. The INTEGER data
type has been introduced in chapter 4 to aid the user in the representation of large numbers and to help
compensate for this drawback.

Some characters are not supported by the compiler except in strings, due to their absence on the
available input devices and a their not having a representation in EBCDIC. The definitions of <quoted
constant> (in 1.1.2) and of <letter> (in 1.2) are therefore restricted to:

<quoted constant> =
" { <character> } '|
" { <character> } "

<letter> =
AUBREGE B E [GHSER]
JIK|L|M|N|[O|P|QIR]
ST V[VR G TRYal 2

13

The only restriction on what may be used as a character is still that in 1.1.2. So " may only be used in
strings delimited by ' and vica-versa.

To help input non-standard characters, a method of describing character strings in hexidecimal has been

Block Bros.
Data Centre 2

added:
<quoted constant> = # { <hex digit> <hex digit> }

<hex digit> =
O[S 28 IS 6| 7|
8/9|A|B|C|D|E|F

The character string described consists of the characters represented by each pair of hex digits.

3 Statements

A file accessed by the PuT statement or the GeT function can be reset so that the next access will be at
the start of the file.

<statement> = RESET <expression>

The value of the expression is used as the name of a file. If the next operation after the ReseT on the file
is a GET, then that Ger will reread the first record of the file. If the next operation is a puT, then the old
contents of the file are lost and replaced by that and following puTs.

4 Declarations

The symbols sTaTiC and ENTRY are not supported (in 4.1.1, 4.1.2, 4.1.3, 4.2 and 4.3), together with the
language facilities they support.

In addition to the types sTRING and NUMBER, the type INTEGER is available (in 4.4.1):
<type> = STRING | NUMBER | INTEGER

An INTEGER object is a whole number.

Two new functions are available for forcing an object to be of type INTEGER (in 4.4.2):

<built-in function call> =
INTEGER (<expression>) |
ROUND (<expression> }

INTEGER has the same definition as the FLoor built-in function (in 2.3.1). RounD rounds the number to the
nearest whole number instead of truncating it as do FLOOR and INTEGER.

5 Programs
<segment> is not supported (in 5.1 and 5.3).

<at-job-start section>, <at-job-end section>, <at-page-start section> and <at-page-end section> are not
supported (in 5.2 and 5.2.2).

6 Characters

Due to the different input and output devices available, the predefined input sequences (in 6.1.2) are not
the same as in the original HUGO implementation, and may vary depending on the output device
selected. In particular, no character is as yet defined as the “backspace” character. This means that the
examples in the HUGO manual may not apply to this implementation.

Note that a predefined sequence or user-code (in 6.1.3) may be any sequence of characters, not just
single characters or backspaced pairs.

The available fonts are different on different devices. Therefore the following character format
statements {in 6.2.1) and built-in functions {in 6.4.2) are not supported: TIMES, MODERN, EXCELSIOR,

¢

Block Bros.
Data Centre ‘ 3

HEVETICA, OLD-HELVETICA, PERMA and BEDFORD. To replace them, the following definitions have been added:

<character format statement> =
oPTIMA <expression> [, <expression>] |
PALATINO <expression> [, <expression>] |
CATALOGUE <expression> [, <expression>] |
OPTIMA-REVERSED <expression> [, <expression>] |
PALATINO-REVERSED <expression> [, <expression>]

<Boolean built-in function call> =
OPTIMA |
PALATINO |
CATALOGUE |
OPTIMA-REVERSED |
PALATINO-REVERSED

Two new sizing operators have been added to those in 6.4.1:

<subfactor> =
<subfactor> rsus |
<subfactor> CENTIGRADE

An RrsU is one 65536th of a point. RsU is a synonym for rsus. One CENTIGRADE is one one-hundredth of a
circle, or 3.6 degrees of angle. It can be used as the argument of the SLANT statement.

One of the output devices available with this implementation supports the display of halftone pictures
or line drawings. Therefore a new statement has been added:

<character format statement> =
LOGO <expression>
[, <expression> [, <expression>]]

The first expression is the name of the required halftone or drawing. The optional second and third
expressions provide scaling information if the picture is to be displayed in a size differing from the one
in which it is stored or if its width is significant in placing text with it in a line. When present, the
second expression specifies the horizontal size (or width) of the picture, and the third is the vertical size
(or height). If the second argument is present but the third is not, the second is used for both values. If
neither the width and height are given a zero value is used. The current text set-height or LEaDING value
is used for inter-line spacing, rather than the given height.

A new alternate form of the Quap statement is available. It differs from the QuAD statement in allowing
the vertical extent of the generated quad space to be specified. A Quap-BLOoCK may therefore affect the
spacing between the line on which it is set and the preceding and following lines.

<character format statement> =
QUAD-BLOCK <expression> [, <expression> [, <expression> |]

As with the QuaD statement, the first expression specifies the width of the quad space to be generated.
The optional second expression specifies the amount of space to be left above the current baseline for
this space, and the optional third expression specifies the amount of space to be left below the current
baseline. The interline spacing will be increased if necessary to accomodate these two space factors. If
the second expression is not given then it defaults to the same value as the first. If the third expression
is not given then it defaults to zeroc.

An alternate form of the Quap-TO statement is also available:

<character format statement> =
QUAD-BEYOND <expression> [<expression> |

Block Bros.
Data Centre 4

The Quabp-To statement will go to the given position in a line even if text filling has already got beyond
that point. This is not always the desired action. So the QUAD-BEYOND statement will Quap the amount
given by the second expression (which defaults to zero), and then attempts to do a Quap-To. If the Quap
has put it beyond the position in the line given by the first expression the Quap-to part of the action
will be ignored.

7 Lines

The Quap-wiTH statement (in 7.3.2) can have an arbitrary string as its first argument, rather than just a
single character. So filling can be done with any string. This is extended so that if any of the characters
or sequences in the string invoke a User-coDE that sets a FIGURE or a L0GO, these also are used as part of
the filler. All or any part of the filler may also be underlined.

The sB-raTIO statement has been extended so that both a minimal and an optimal space-band size can be
specified:

<line format statement> =
SB-RATIO <expression> [, <expression>]

If only one expression is given in the sB-RATIO statement, then it acts as described in the manual. If two
expressions are given, then the first is taken to be the minimum space-band ratio allowed, and the
second is the desired space-band ratio. The effect of the optimal ratio will not normally be noticed in
justified text, but in FLUSH-LEFT, FLUSH-RIGHT or CENTREd lines the optimum size will be used rather than
the minimum.

“Dash” characters (hyphens, em and en dashes) normally indicate a valid place to break text (following
the dash). A new statement, NO-DASH-BREAK, prevents text breaking following dashes, and the pasH-BREAK
statement restores the normal condition.

<line format statement> =
DASH-BREAK |
NO-DASH-BREAK

The rLUSH-LEFT-WITH and JUSTIFY-WITH statements (in 7.3.2) are not supported, nor is the DISCRETIONARY
statement (in 7.4) or hyphenation (in 7.5 and 7.7).

8 Paragraphs

Most of the paragraph make-up features are as yet unimplemented. The only statements in this chapter
which are fully supported are SAVE, RESTORE, SAVE-DEFAULTS and RESTORE-DEFAULTS (in 8.1.2), and oON,
LEADING, PARA-SPACE, NO-PARA-SPACE and SPACE-BLOCK (in 8.2.3), together with the PaArRa-sPacE and NO-PARA-
SPACE built-in functions (in 8.2.4).

The sus-para statement (in 6.2.1) and the HEAD, TAG, INTER-PARA and TEXT statements (in 8.3.1) are
supported only to the extent of their effect on line indentation, line justification, and the saving and
restoring of default attributes.

9 Pages

Only the page layout definition facilities in 9.1 and 9.2.4, the RESERVE, NEW-BODY, FINISH-BODY and FINISH
statements {in 9.2.1) and the built-in functions aT-Y, MaX-DEPTH and MAX-WIDTH (in 9.5.1) and a0, 41, a2,
A3, A4, A5, 46, A7 and a8 (in 9.5.3) are supported.

Galley-form make-up has been extended to allow the RESERVE and NEw-BODY statements in GALLEYs, but
with the same restrictions as given for FINISH-BODY and FINISH in 9.2.4.

An a7-x built-in function has been added with a meaning analogous to that of the ar-v function:

<built-in function call> = aT-x

Block Bros.
Data Centre 5

It returns the first argument of the most recent AT statement encountered.

10 Ruling and Underlining

The following forms of ruling are supported: underlining (in 10.1.1), rule filling (in 10.2), figure rules (in
10.3), and ruling in a page layout (in 10.4). All the related built-in functions are supported (in 10.5).
Side-lining (in 10.1.2), FLUSH-LEFT-WITH-RULE and JUSTIFY-WITH-RULE (in 10.2), and ruling in the page body
(in 10.5) are not supported.

11 Text Input
A new builtin function is available:
<built-in function call> = GET-NEXT-LINE

This function will return the next line from the same file that is being used by the E-vou-rnps. That
line is thereafter deleted from the input and will not be encountered by the pattern matching facilities
of HUGO. This function can be called repeatedly and will input successive lines from the input,
returning the null string when and if it encounters the end of the input file (similar to GeT).

12 General Enguiries

The name of the seconps built-in function has been changed to miNuTEs with the obvious change in
meaning.

Appendix A Implementation Dependent Features

The seT-aBSOLUTE statement has been redefined. It now functions exactly as does the seT statement,
except that no USER-CODES Or ESCAPE-CHARs are recognized in the string being set. This allows the pre-
defined meaning of an input character or sequence to be accessed even though it is being used as a USERr-
CODE OT ESCAPE-CHAR.

The Escape-cHaR feature has been extended so that the EscaPE-cHAR can be a string of one or more
characters.

Documents and their related functions (all of A.3) are not supported.

Job accounting is not supported (in A.4), but the joB-NaME built-in function has been implemented. Two
new functions, OUTPUT-DEVICE and PARM, are supported:

<built-in function call> =
OUTPUT-DEVICE |
PARM

OUTPUT-DEVICE Teturns a string which is the name of the device for which HUGO is preparing set data.
The devices now supported are “VC570”, “3800-BLST”, “3800-ET69” and “3800-SCS0”. These are
described in more detail later. parM returns the value of the parameter supplied to the HUGO program
at run time using the PARM field on the JCL EXEC card. Conforming to PL/I conventions, the
parameter supplied must be preceded by a slash.

The ERROR and WARNING statements (in A.6) are supported, but the rror built-in function is not.

s .

Block Bros.
Data Centre 6

Appendiz B Language Summary

There are different default attributes (in B.4) for each of the supported output devices. Where they
differ they are given together with the detailed descriptions of the available fonts at the end of this
report.

Appendix C Using the TEPB Implementation of HUGO

The control cards and options for running the current HUGO implementation are quite different from
those used at TEPB. For the present, the JCL in the library BL.HUGO.JCL in members RUN570 and
RUNSCSO0 should be used as models for jobs for each of the devices.

Appendix D Font and Character Access

This is, of course, where the current implementation differs most from the original one. The following
describes the available Locos and character sets, and the defaults attributes available on each device.

D.1 LOGOs
BB080 @
BBo70 @ BB060 @ BB050 @ BB045 @

BBo40o @ BB035 @ BB030 @ BB025 BBo020 @ BBoO15

BBoio EB
D.2 Default Attributes

The default attributes are generally those described in the HUGO manual. The only exceptions at
present are the default font, setsize and line width on each device. The ruling and underlining
commands are not supported on the IBM 3800, and will be simply ignored. The defaults for each device
are:

For the VC570
FONT 100, 9 POINTS ON 10 POINTS
wIDTE 200 POINTS
SB-STEP 1 RSU

For the IBM 3800-ET69

Block Bros.
Data Centre

FONT O, (1 pIv 12) INcH BY (1 DIV 6) INCH
oN (1 pv 12) INCH

WIDTH 7 INCHES

SB-STEP 1 EN

For the IBM 3800-SCS0
FONT 0, 0.1 mcH BY (1 DIV 6) INCH
oN 0.1 INcH
WIDTH 7 INCHES
SB-STEP 1 EN

For the IBM 3800-BLST
FONT 0, 0.125 INCH BY (2 DpIv 15) INCH
oN 0.125 mcH
WIDTH 9 INCHES
SB-STEP 1 EN

D.3 Fonts and Character Sets

The following pages display the characters available in each font on each supported device. The only
predefined input sequences at present are single characters, and the tables indicate the output resulting
from each character in the EBCDIC set. Positions left blank are undefined, except that the “space”
character (hexidecimal 40) results in the SPACE-BAND action.

The relationship between the fonts on the VC570 is:

Font 100 is Palatino.
Font 105 is Palatino italic.
Font 110 is Palatino bold.
Font 111 is Palatino-reversed.
Font 200 is Optima.

Font 205 is Optima italic.
Font 210 is Optima bold.
Font 211 is Optima-reversed.
Font 315 is Catalogue.

Font 415 is Catalogue bold.

‘L

ot supy

-0

100, 9 romnts

~ 200 romnTs
SB-STEP 1 Rsyp

For the IBM 3800-ETs9

